第七题证明
2016-07-18
展开全部
F'(x)=[(x-a)f(x)-∫[a-->x]f(t)dt]/(x-a)²
=[(x-a)f(x)-∫[a-->x]f(t)dt]/(x-a)²
由积分中值定理:存在ξ∈(a,x),使得 ∫[a-->x]f(t)dt=f(ξ)(x-a)
=[(x-a)f(x)-(x-a)f(ξ)]/(x-a)²
=[f(x)-f(ξ)]/(x-a)
由于x>a,x>ξ>a,f '(x)<0,则f(x)为减函数,因此 f(x)<f(ξ)
因此F'(x)<0
=[(x-a)f(x)-∫[a-->x]f(t)dt]/(x-a)²
由积分中值定理:存在ξ∈(a,x),使得 ∫[a-->x]f(t)dt=f(ξ)(x-a)
=[(x-a)f(x)-(x-a)f(ξ)]/(x-a)²
=[f(x)-f(ξ)]/(x-a)
由于x>a,x>ξ>a,f '(x)<0,则f(x)为减函数,因此 f(x)<f(ξ)
因此F'(x)<0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询