方差分析中的MS,SS,F,DF分别是什么意思
DF:degree freedom自由度,自由度是在计算某一测量系统时不受限制的变量数。
SS:Stdev square 方差,表示均值偏差的平方和和数据的总变化量。
MS:Mean square均方差,其值等于对应的SS除以DF。
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
扩展资料:
方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:
(1) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。
(2) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。
总偏差平方和 SSt = SSb + SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。
另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。
MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体 。
2024-05-27 广告
推荐于2018-04-27 · 知道合伙人互联网行家
DF是自由度
MS是均方,其值等于对应的SS除以DF
F就是F统计量,是方差分析中用于假设检验的统计量,其值等于处理的MS除以误差的MS。
PART
01
Excel中的方差分析
方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
方差分析的基本步骤如下:
1、建立检验假设;
H0:多个样本总体均值相等;
H1:多个样本总体均值不相等或不全等。
检验水准为0.05。
2、计算检验统计量F值;
3、确定P值并作出推断结果。
Excel中的方差分析工具提供了不同类型的方差分析方法,如下图所示,我们可以根据要测试的样本总体中的因素数和样本数来决定要使用的方法。
PART
02
单因素方差分析实例
如果只考虑一个因素对某项实验指标的影响力是否显著,则可通过对此因素的多个水平试验结果进行比较。
单因素方差分析的第一步是明确观测变量和控制变量。
单因素方差分析的第二步是剖析观测变量的方差。方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=SSA+SSE。
单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。