线性方程组中的 特解是怎么求得的,请以这道题 讲解一下,谢谢了

 我来答
zhangsonglin_c
高粉答主

2016-05-03 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.7万
采纳率:83%
帮助的人:6755万
展开全部
通解中的任意一个,就是特解。如果通解已经求出,将参数用任意一个数代入,可以求得一个特解。
通解没有求出,将(未知数-方程数(或秩))个数的未知数,任意指定一个数,求出其他未知数的解,就能得到一个一组特解。
本题,4未知数,3方程,4-3=1,可以令x1=0
代入得:
-5x2+2x3+3x4=11
x2-4x3-2x4=-6
-9x2+3x4=15
三个方程,三个未知数,一般都可以求出来。
富港检测技术(东莞)有限公司_
2024-04-02 广告
写出系数矩阵为 2 -1 1 -1 2 -1 0 -3 0 1 3 -6 2 -2 -2 5 r2-r1,r4-r1,r1+r3 ~ 2 0 4 -7 0 0 -1 -2 0 1 3 -6 0 -1 -3 6 r4+r3,r1+4r2,r3... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
百度网友cc06a77
高粉答主

2018-03-31 · 说的都是干货,快来关注
知道大有可为答主
回答量:263
采纳率:100%
帮助的人:8.8万
展开全部

通解中的任意一个,就是特解。如果通解已经求出,将参数用任意一个数代入,可以求得一个特解。
通解没有求出,将(未知数-方程数(或秩))个数的未知数,任意指定一个数,求出其他未知数的解,就能得到一个一组特解。
本题,4未知数,3方程,4-3=1,可以令x1=0
代入得:
-5x2+2x3+3x4=11
x2-4x3-2x4=-6
-9x2+3x4=15
三个方程,三个未知数,一般都可以求出来。

简介

xj表未知量,aij称 系数,bi称 常数项

称为 系数矩阵和 增广矩阵。若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非 零解。若 常数项均为0,则称为 齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。线性方程组主要讨论的问题是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;r消元法求解。

当 非齐次线性方程组有解时,解唯一的 充要条件是对应的齐次线性方程组只有 零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的 导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。

克莱姆法则(见 行列式)给出了一类特殊线性方程组解的公式。n个未知量的任一 齐次方程组的解集均构成n维空间的一个 子空间。

线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定 约束条件的线性方程组问题。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式