统计学的方差分析表中,p值怎么计算
P值的计算公式:
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
其中,Φ(z0)要查表得到。
z0=(x-n*p0)/(根号下(np0(1-p0)))
最后,当P值小于某个显著参数的时候我们就可以否定假设。反之,则不能否定假设。
实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。
扩展资料:
如测量误差造成的差异或个体间的差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。
总偏差平方和 SSt = SSb + SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。
另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。
当控制变量为定序变量时,趋势检验能够分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,是呈现线性变化趋势,还是呈二次、三次等多项式变化。通过趋势检验,能够帮助人们从另一个角度把握控制变量不同水平对观测变量总体作用的程度。
参考资料来源:百度百科——方差分析
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
其中,Φ(z0)要查表得到。
z0=(x-n*p0)/(根号下(np0(1-p0)))
最后,当P值小于某个显著参数的时候我们就可以否定假设。反之,则不能否定假设。
注意,这里p0是那个缺少的假设满意度,而不是要求的P值。
没有p0就形不成假设检验,也就不存在P值
统计学上规定的P值意义:
P值 碰巧的概率 对无效假设 统计意义
P>0.05 碰巧出现的可能性大于5% 不能否定无效假设 两组差别无显著意义
P<0.05 碰巧出现的可能性小于5% 可以否定无效假设 两组差别有显著意义
P <0.01 碰巧出现的可能性小于1% 可以否定无效假设 两者差别有非常显著意义