求齐次线性方程组,要过程,谢谢 10

 我来答
zzllrr小乐
高粉答主

推荐于2017-12-15 · 小乐图客,小乐数学,小乐阅读等软件作者
zzllrr小乐
采纳数:20147 获赞数:78775

向TA提问 私信TA
展开全部

1    1    1    1    

3    2    1    0    

0    1    2    3    

1    2    3    4    



第2行,第4行, 加上第1行×-3,-1

1    1    1    1    

0    -1    -2    -3    

0    1    2    3    

0    1    2    3    



第1行,第3行,第4行, 加上第2行×1,1,1

1    0    -1    -2    

0    -1    -2    -3    

0    0    0    0    

0    0    0    0    

显然秩等于2<4,因此方程组有无穷多组解(有非零解)


(2)

观察上图最后的矩阵

令x2=0,x4=2,解得x3=-3,x1=1

令x2=1,x3=1,解得x4=-1,x1=-1


因此得到基础解系:

(1,0,-3,2)T (-1,1,1,-1)T


因此通解是

k1(1,0,-3,2)T+k2(-1,1,1,-1)T

其中k1,k2是不全为0的常数

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
cukbon
2009-06-24 · 超过12用户采纳过TA的回答
知道答主
回答量:27
采纳率:0%
帮助的人:0
展开全部
设解向量为X(x1,x2,x3)
初等变换之后[-1,1,2]
因为X是3维向量,X的方程组系数矩阵的秩为1,所以基础解系含解个数为3-1=2。
同解方程组是-x1+x2+2*x3=0
通解为
x1=1*k1+2*k2
x2=1*k1+
x3= 1*k2
(k1,k2是任意常数)

于是基础解系就是N1=(1,1,0)T;N2=(2,0,1)T【其实就是k1和k2的系数矩阵。】

你在纸上整齐一点写下来就更清楚了

=========================
【按 -1 1 2,那应该是前两个相反,第三个是前两个的2倍才对啊】
你理解错(-1 1 2)这个向量的意义了

用矩阵的方式写出这个方程组是这样的
[-1 1 2]
[1 -1 -2] [x1 x2 x3]T=0
[1 -1 -2]

初等变换之后
[-1 1 2]
[0 0 0] [x1 x2 x3]T=0
[0 0 0]

把[x1 x2 x3]乘进系数矩阵,有意义的方程就剩下
-x1+x2+2*x3=0

就是x1=x2+2*x3,“第一个的系数”应该是“第二个的系数”加上“第三个的系数”*2

只要把[x1 x2 x3]的关系表示出来就是求得通解了

=========================

用Gauss-Jordan消去法的时候【对角线上的-1】
是当消去成下面形式【矩阵的左上半个矩阵是单位矩阵,矩阵的下面若干行全为0】
1 0 a b
0 1 c d
0 0 0 0
0 0 0 0
的时候添在【全为零的行且在整个矩阵的对角线】上
1 0 a b
0 1 c d
0 0 -1 0
0 0 0 -1

于是基础解系可以从-1所在的列读出。就是N1=(a,c,-1)T,N2=(b,d,-1)T
因为对基础解系作线性变换所得的向量仍然为基础解系
所以N1=(-a,-c,1)T,N2=(-b,-d,1)T也是基础解系
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
天空女神6
2016-04-06 · 超过38用户采纳过TA的回答
知道答主
回答量:418
采纳率:0%
帮助的人:109万
展开全部
。。。
追问
答案呢…???
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式