三角函数 要有解题过程的
2010-08-31
展开全部
sinA=(sinB+sinC)/(cosB+cosC)
a=(b+c)/( (a^+c^-b^)/2ac +(a^+b^-c^)/2ab )
两边可同时去掉a 再通分可整理为 (a^+c^-b^)b+(a^+b^-c^)c=(b+c)2bC
化简后,右边提取相同项 (b+c)( a^+bc-b^+bc-c^)=(b+c)2bc
a^+bc-b^+bc-c^=2bc
a^-b^-c^=0
a^=b^+c^
这是直角三角形
参考:
.在三角形ABC中,若sinA=(sinB+sinC)/(cosB+cosC),
判断三角形ABC的形状。
解::∵sinA=(sinB+sinC)/(cosB+cosC) ∴sinA- (sinB+sinC)/(cosB+cosC) =0
∴sinA- 2sin[(B+C)/2]cos[(B-C)/2]/ 2cos[(B+C)/2]cos[(B-C)/2]=0
∴sinA- sin[(B+C)/2] / cos[(B+C)/2]=0
∴2sin(A/2)cos(A/2)- cos(A/2) / sin(A/2)=0,又∵cos(A/2)≠0
∴2sin(A/2) - 1 / sin(A/2)=0
∴2sin2 (A/2) - 1=0 ∴2sin2 (A/2)=1 ∵sin(A/2)>0
∴sin(A/2)=√2/2,则A/2=π/4
∴A=π/2,即:三角形ABC为以A为直角顶点的直角三角形。
a=(b+c)/( (a^+c^-b^)/2ac +(a^+b^-c^)/2ab )
两边可同时去掉a 再通分可整理为 (a^+c^-b^)b+(a^+b^-c^)c=(b+c)2bC
化简后,右边提取相同项 (b+c)( a^+bc-b^+bc-c^)=(b+c)2bc
a^+bc-b^+bc-c^=2bc
a^-b^-c^=0
a^=b^+c^
这是直角三角形
参考:
.在三角形ABC中,若sinA=(sinB+sinC)/(cosB+cosC),
判断三角形ABC的形状。
解::∵sinA=(sinB+sinC)/(cosB+cosC) ∴sinA- (sinB+sinC)/(cosB+cosC) =0
∴sinA- 2sin[(B+C)/2]cos[(B-C)/2]/ 2cos[(B+C)/2]cos[(B-C)/2]=0
∴sinA- sin[(B+C)/2] / cos[(B+C)/2]=0
∴2sin(A/2)cos(A/2)- cos(A/2) / sin(A/2)=0,又∵cos(A/2)≠0
∴2sin(A/2) - 1 / sin(A/2)=0
∴2sin2 (A/2) - 1=0 ∴2sin2 (A/2)=1 ∵sin(A/2)>0
∴sin(A/2)=√2/2,则A/2=π/4
∴A=π/2,即:三角形ABC为以A为直角顶点的直角三角形。
展开全部
在三角形ABC中,若sinA=(sinB+sinC)/(cosB+cosC),
判断三角形ABC的形状。
解::∵sinA=(sinB+sinC)/(cosB+cosC) ∴sinA- (sinB+sinC)/(cosB+cosC) =0
∴sinA- 2sin[(B+C)/2]cos[(B-C)/2]/ 2cos[(B+C)/2]cos[(B-C)/2]=0
∴sinA- sin[(B+C)/2] / cos[(B+C)/2]=0
∴2sin(A/2)cos(A/2)- cos(A/2) / sin(A/2)=0,又∵cos(A/2)≠0
∴2sin(A/2) - 1 / sin(A/2)=0
∴2sin2 (A/2) - 1=0 ∴2sin2 (A/2)=1 ∵sin(A/2)>0
∴sin(A/2)=√2/2,则A/2=π/4
∴A=π/2,即:三角形ABC为以A为直角顶点的直角三角形。
判断三角形ABC的形状。
解::∵sinA=(sinB+sinC)/(cosB+cosC) ∴sinA- (sinB+sinC)/(cosB+cosC) =0
∴sinA- 2sin[(B+C)/2]cos[(B-C)/2]/ 2cos[(B+C)/2]cos[(B-C)/2]=0
∴sinA- sin[(B+C)/2] / cos[(B+C)/2]=0
∴2sin(A/2)cos(A/2)- cos(A/2) / sin(A/2)=0,又∵cos(A/2)≠0
∴2sin(A/2) - 1 / sin(A/2)=0
∴2sin2 (A/2) - 1=0 ∴2sin2 (A/2)=1 ∵sin(A/2)>0
∴sin(A/2)=√2/2,则A/2=π/4
∴A=π/2,即:三角形ABC为以A为直角顶点的直角三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询