解一元三次方程的正确解题
上述三个例子是没有正确运用盛金公式解题,因而得出错误的结果,但并不表示公式不正确。
正确地运用盛金公式解答上述三个例子如下:
例1、解方程X^3+4X^2+24X—404=0
a=1,b=4,c=24,d=—404。
A=—56;B=3732;C=5424,△=15142800。
∵△>0,∴应用用盛金公式2求解。
Y1=15.06261745;
Y2=—11659.06262。
X1=5.401913151;
X2,X3=—4.700956575±7.258741321i。
用韦达定理检验:
X1+X2+X3=—3.999999999;
X1(X2+X3)+X2X3=24;
X1X2X3=404.0000001。
—b/a=—4;
c/a=24;
—d/a=404。
经用韦达定理检验,结果正确。
例2、解方程X^3—18X^2+107X—210=0
a=1,b=—18,c=107,d=—210。
A=3;B=—36;C=109,△=—12。
∵△<0 ,∴应用盛金公式4求解。
θ=90°。
把有关值代入盛金公式4,得:
X1=5;X2=7;X3=6。
用韦达定理检验:
X1+X2+X3=18;
X1(X2+X3)+X2X3=107;
X1X2X3=210。
—b/a=18;
c/a=107;
—d/a=210。
经用韦达定理检验,结果正确。
例3、解方程X^3—29X^2+264X—720=0解:
a=1,b=—29,c=264,d=—720。
A=49;B=—1176;C=7056,△=0。
∵△=0 ,∴应用盛金公式3求解。
K=—24。
把有关值代入盛金公式3,得:
X1=5;X2=X3=12。
用韦达定理检验:
X1+X2+X3=29;
X1(X2+X3)+X2X3=264;
X1X2X3=720。
—b/a=29;
c/a=264;
—d/a=720。
经用韦达定理检验,结果正确。
在所得的结果是近似值的情况下,如果把近似值代入原方程,那么原方程的左边不为零,此时用代入法检验不能判断结果是否正确,要用韦达定理检验才能判断结果是否正确。
盛金公式是精确的三次方程求根公式,只要运算过程操作不失误,在计算机允许输入足够的位数的情况下,就可达到所需要的足够的精确度。