不定积分1/√(x^2-1)dx怎么求?

 我来答
匿名用户
2016-10-06
展开全部

因为被积函数是偶函数,所以最后得到的原函数必定是奇函数。根据对称性,这里首先考虑x>0时的情况。

根据三角函数的基本关系,设x=csc u=1/sin u,因为x>1,所以令u∈(0,π/2)。

那么dx=-cos udu/sin² u,

sqrt(x^2-1)=sqrt(1/sin² u-1)=cot u=1/tan u,

所以原来的积分=∫1/tan u*(-cos u/sin² u)du=-∫cos u/(tan u*sin² u)du

=-∫cos²u/sin³u du

接下来的部分见下图:

设t=cos u,那么t=sqrt(1-sin²u)=sqrt(1-1/x²)=sqrt(x²-1)/x。

因为

所以原来的积分为

把t=sqrt(x²-1)/x代入得到

这是x>0时候的情况。

当x<0时,-x>0,因此

原函数在-x处的函数值为

根据奇函数的特点,可知当x<0时的函数值为

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式