由矩阵的初等变换求逆矩阵的原理?我想了很久都没想明白,求大家帮帮我

 我来答
来自杨三寨雪白的月季花
高粉答主

推荐于2019-10-11 · 说的都是干货,快来关注
知道答主
回答量:14
采纳率:100%
帮助的人:2323
展开全部

1、任何一个可逆矩阵都可以写成一系列初等矩阵的乘积。

2、对矩阵A进行行初等变换,相当于左乘以一和初等矩阵,对A进行列初等变换,相当于右乘以一个初等矩阵。

3、对可逆矩阵A进行一系列的初等行变换,一定可以把A化为单位矩阵E,即存在矩阵P,使得PA=E。

所以对分块矩阵(A,E)进行一系列初等行变换,化A为E,此时对E也进行了同样的初等行变换,所以就相当于对(A,E)左乘以矩阵P,所以P(A,E)=(PA,P)=(E,P),P就是A的逆矩阵。

同样地,如果对矩阵(A)(E)只进行初等列变换,化A为E,则E同时变换为A的逆矩阵。

扩展资料:

矩阵等价

若矩阵A经过有限次的初等行变换变为矩阵B,则矩阵A与矩阵B行等价;若矩阵A经过有限次的初等列变换变为矩阵B,则矩阵A与矩阵B列等价;若矩阵A经过有限次的初等变换变为矩阵B,则矩阵A与矩阵B等价。

矩阵等价性质:

(1)反身性 A~A;

(2)对称性 若A~B,则B~A;

(3)传递性 若A~B,B~C,则A~C

初等矩阵性质:

1、设A是一个m×n矩阵,对A施行一次初等行变换,其结果等价于在A的左边乘以相应的m阶初等矩阵;对A施行一次初等列变换,其结果等价于在A的右边乘以相应的n阶初等矩阵。反之亦然。

2、方阵A可逆的充分必要条件是存在有限个初等矩阵P1,P2,......Pn,使得P1P2...Pn.

3、m×n矩阵A与B等价当且仅当存在m阶可逆矩阵P与n阶可逆矩阵Q使得B=PAQ。

参考资料:百度百科-矩阵变换

匿名用户
推荐于2017-11-23
展开全部
首先,任何一个可逆矩阵都可以写成一系列初等矩阵的乘积。
其次,对矩阵A进行行初等变换,相当于左乘以一和初等矩阵,对A进行列初等变换,相当于右乘以一个初等矩阵。
最后,对可逆矩阵A进行一系列的初等行变换,一定可以把A化为单位矩阵E,即存在矩阵P,使得PA=E。所以对分块矩阵(A,E)进行一系列初等行变换,化A为E,此时对E也进行了同样的初等行变换,所以就相当于对(A,E)左乘以矩阵P,所以P(A,E)=(PA,P)=(E,P),P就是A的逆矩阵。
同样地,如果对矩阵
(A)
(E)
只进行初等列变换,化A为E,则E同时变换为A的逆矩阵。
追问
今天老师又讲了一下,我现在懂了谢谢
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式