怎样证明一个向量组能由另一个向量组线性表示
向量组B=(β1,β2,……,βm)能由向量组A=(α1,α2,……,αm)线性表示的充要条件是矩阵A=(α1,α2,……,duαm)的秩等于矩阵(α1,α2,……,αm,B)的秩。
向量组B能由向量组A线性表示,则向量组B的秩不大于向量A的秩。反之不一定成立。
一个向量可由向量组中其余向量线性表示,前zhi提是这个向量组线性相关。线性相关的向量组中并不是任一向量都可由其余向量线性表示;但当其余向量线性无关时,这个向量必可由其余向量线性表示。
1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。
2、任一向量组和它的极大无关组等价。
3、向量组的任意两个极大无关组等价。
4、两个等价的线性无关的向量组所含向量的个数相同。
5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。
6、如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。
扩展资料:
线性表示的性质:
1、向量组α1,回α2,……,αm中每个向量都可由向量组本身线性表示。
2、任一答n维向量α=(α1,α2,……,αm)都可由n维单位向量组线性表示。
3、设α1,α2,……,αm线性无关,而α1,α2,……,αm,ß线性相关,则β可由α1,α2,……,αm线性表示,且表示是唯一的。