第二题不定积分
展开全部
解:换元法
令u=(e^x+1)^1/2
u^2=e^x+1
e^x=u^2-1
x=ln(u^2-1)
dx=1/(u^2-1)x2u=2u/(u^2-1)du
原是=积分ux2u/(u^2-1)du
=2积分u^2/(u^2-1)du
=2积分(u^2-1+1)/(u^2-1)du
=2积分(1+1/(u^2-1))du
=2(积分1du+积分1/(u^2-1)du)
=2(u+积分1/(u^2-1)du)
=2u+2积分1/(u^2-1)du
积分1/(U^2-1)du
=1/2积分(1/(u-1)-1/(u+1))du
=1/2(积分1/(u-1)du-积分1/(u+1)du)
=1/2(ln/u-1/-ln/u+1/)+C
=1/2ln/(u-1)/(u+1)/+C
原是=2u+2x1/2ln/(u-1)/(u+1)/+C
=2u+ln/(u-1)/(u+1)/+C.
u=(e^x+1)^1/2
=2(e^x+1)^1/2+ln/((e^x+1)^1/2-1)/((e^x+1)^1/2+1)/+C.
答:答案是2(e^x+1)^1/2+ln/((e^x+1)^1/2-1)/((e^x+1)^1/2+1)/+C.
令u=(e^x+1)^1/2
u^2=e^x+1
e^x=u^2-1
x=ln(u^2-1)
dx=1/(u^2-1)x2u=2u/(u^2-1)du
原是=积分ux2u/(u^2-1)du
=2积分u^2/(u^2-1)du
=2积分(u^2-1+1)/(u^2-1)du
=2积分(1+1/(u^2-1))du
=2(积分1du+积分1/(u^2-1)du)
=2(u+积分1/(u^2-1)du)
=2u+2积分1/(u^2-1)du
积分1/(U^2-1)du
=1/2积分(1/(u-1)-1/(u+1))du
=1/2(积分1/(u-1)du-积分1/(u+1)du)
=1/2(ln/u-1/-ln/u+1/)+C
=1/2ln/(u-1)/(u+1)/+C
原是=2u+2x1/2ln/(u-1)/(u+1)/+C
=2u+ln/(u-1)/(u+1)/+C.
u=(e^x+1)^1/2
=2(e^x+1)^1/2+ln/((e^x+1)^1/2-1)/((e^x+1)^1/2+1)/+C.
答:答案是2(e^x+1)^1/2+ln/((e^x+1)^1/2-1)/((e^x+1)^1/2+1)/+C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询