求详细的过程!
1个回答
展开全部
z=e^-(y/x+x/y)
∂z/∂x
=e^-(y/x+x/y)*(-(y/x+x/y))'
=e^-(y/x+x/y)*(y/x²-1/y)
∂z/∂y
=e^-(y/x+x/y)*(-(y/x+x/y))'
=e^-(y/x+x/y)*(-1/x+x/y²)
所以dz =e^-(y/x+x/y)*(y/x²-1/y)+e^-(y/x+x/y)*(-1/x+x/y²)=e^-(y/x+x/y)*[(y/x²-1/y)+(-1/x+x/y²)]
∂z/∂x
=e^-(y/x+x/y)*(-(y/x+x/y))'
=e^-(y/x+x/y)*(y/x²-1/y)
∂z/∂y
=e^-(y/x+x/y)*(-(y/x+x/y))'
=e^-(y/x+x/y)*(-1/x+x/y²)
所以dz =e^-(y/x+x/y)*(y/x²-1/y)+e^-(y/x+x/y)*(-1/x+x/y²)=e^-(y/x+x/y)*[(y/x²-1/y)+(-1/x+x/y²)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询