原函数连续可导,那么导函数连续吗
对一元函数来说:一函数存在导函数,说明该函数处处可导,故原函数一定连续。(可导一定连续)
如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导定义:
(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0+a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。
(2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导。
扩展资料
若f(x)在区间(a,b)内可导,其函数即函数f(x)在(a,b)内每点都存在导数,但其导函数f'(x)在内部(a,b)不一定连续;
所谓f(x)在区间(a,b)内连续可导,不仅函数f(x)在(a,b)内每点都存在导数,且其导数函数f'(x)在(a,b)内连续。
罗尔定律:
设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f‘(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义。
①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;
②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;
③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f’(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。
参考资料来源:百度百科-可导
对一元函数来说:一函数存在导函数,说明该函数处处可导,故原函数一定连续。(可导一定连续)
如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导定义:
(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0+a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。
(2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导。
扩展资料:
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数不一定在定义域上处处可导。
函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
参考资料:百度百科—可导
原函数F(x)=x²sin(1/x)(x≠0)
且F(0)=0
你会发现它在R上连续可导,尤其在0处恰好连续。但其导函数在0处恰好就是第二类间断点(无穷震荡的那种)
f(x)=x²sin(1/x) x≠0
f(x)=0 x=0
可参阅百度文库:
https://wenku.baidu.com/view/df4e08db580216fc710afdb4.html