
设a是实数,f(x)=a-2/2^x+1,试证明对于任意a,f(x)在R为增函数
3个回答
展开全部
设a是实数,f(x)=a-2/2^x+1,试证明对于任意a,f(x)在R为增函数
假设m>n,m、n∈R
f(m)-f(n)={a-[2/(2^m+1)]}-{a-[2/(2^n+1)]}
=-2[1/(2^m+1)-1/(2^n+1)]
=-2{(2^n-2^m)/[(2^m+1)(2^n+1)]}
=-2{2^n*[1-2^(m-n)]/[(2^m+1)(2^n+1)]}
=-{+*-/+}>0
所以f(x)在R上是增函数
假设m>n,m、n∈R
f(m)-f(n)={a-[2/(2^m+1)]}-{a-[2/(2^n+1)]}
=-2[1/(2^m+1)-1/(2^n+1)]
=-2{(2^n-2^m)/[(2^m+1)(2^n+1)]}
=-2{2^n*[1-2^(m-n)]/[(2^m+1)(2^n+1)]}
=-{+*-/+}>0
所以f(x)在R上是增函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询