多次多项式怎么因式分解
1个回答
展开全部
答:①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止.
(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a).如f(x)=x²+5x+6,f(-2)=0,则可确定(x+2)是x²+5x+6的一个因式
另外,在多次多项式内,还可以用双十字相乘法,轮换对称法解决.
主要注意事项:初学因式分解的“四个注意”
因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中.学习它,既可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力.其中四个注意,则必须引起师生的高度重视.
因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”.现举数例,说明如下,供参考.
例1 把-a²-b²+2ab+4分解因式.
-a²-b²+2ab+4=-(a²-2ab+b²-4)=-(a-b+2)(a-b-2)
这里的“负”,指“负号”.如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的.防止学生出现诸如-9x²+4y²=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误?
正确解法:-9x²+4y²=4y² -9x²=(2y+ 3x)(2y-3x)。
如例2 △abc的三边a、b、c有如下关系式:-c²+a²+2ab-2bc=0,求证这个三角形是等腰三角形.
分析:此题实质上是对关系式的等号左边的多项式进行因式分解.
证明:∵-c²+a²+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0.
又∵a、b、c是△abc的三条边,∴a+2b+c>0,∴a-c=0,
即a=c,△abc为等腰三角形.
例3把-12x²ⁿyⁿ+18xⁿ+2yⁿ+1-6xⁿyⁿ-1分解因式.-12x²ⁿyⁿ+18xⁿ+2yⁿ+1-6xⁿyⁿ-1=-6xⁿyⁿ-1(2xⁿy-3x²y²+1)
这里的“公”指“公因式”.如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1.防止学生出现诸如6p(x-1)3-8p²(x-1)²+2p(1-x)²=2p(x-1)²〔3(x-1)-4p〕=2p(x-1)²(3x-4p-3)的错误.
例4 在实数范围内把x⁴-5x²-6分解因式.
x⁴-5x²-6=(x²+1)(x²-6)=(x²+1)(x+6)(x-6)
这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止.即分解到底,不能半途而废的意思.其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解.防止学生出现诸如4x⁴y²-5x²y²-9y²=y2(4x4-5x²-9)=y²(x²+1)(4x²-9)的错误.
由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的.
例题:3ab+5b
-22y²+35y-3
a²+b²+ab+a+b+a+1
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止.
(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a).如f(x)=x²+5x+6,f(-2)=0,则可确定(x+2)是x²+5x+6的一个因式
另外,在多次多项式内,还可以用双十字相乘法,轮换对称法解决.
主要注意事项:初学因式分解的“四个注意”
因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中.学习它,既可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力.其中四个注意,则必须引起师生的高度重视.
因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”.现举数例,说明如下,供参考.
例1 把-a²-b²+2ab+4分解因式.
-a²-b²+2ab+4=-(a²-2ab+b²-4)=-(a-b+2)(a-b-2)
这里的“负”,指“负号”.如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的.防止学生出现诸如-9x²+4y²=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误?
正确解法:-9x²+4y²=4y² -9x²=(2y+ 3x)(2y-3x)。
如例2 △abc的三边a、b、c有如下关系式:-c²+a²+2ab-2bc=0,求证这个三角形是等腰三角形.
分析:此题实质上是对关系式的等号左边的多项式进行因式分解.
证明:∵-c²+a²+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0.
又∵a、b、c是△abc的三条边,∴a+2b+c>0,∴a-c=0,
即a=c,△abc为等腰三角形.
例3把-12x²ⁿyⁿ+18xⁿ+2yⁿ+1-6xⁿyⁿ-1分解因式.-12x²ⁿyⁿ+18xⁿ+2yⁿ+1-6xⁿyⁿ-1=-6xⁿyⁿ-1(2xⁿy-3x²y²+1)
这里的“公”指“公因式”.如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1.防止学生出现诸如6p(x-1)3-8p²(x-1)²+2p(1-x)²=2p(x-1)²〔3(x-1)-4p〕=2p(x-1)²(3x-4p-3)的错误.
例4 在实数范围内把x⁴-5x²-6分解因式.
x⁴-5x²-6=(x²+1)(x²-6)=(x²+1)(x+6)(x-6)
这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止.即分解到底,不能半途而废的意思.其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解.防止学生出现诸如4x⁴y²-5x²y²-9y²=y2(4x4-5x²-9)=y²(x²+1)(4x²-9)的错误.
由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的.
例题:3ab+5b
-22y²+35y-3
a²+b²+ab+a+b+a+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询