22题求解
解:
分析,f(x)是一元函数,何来二阶连续偏导数之说?按照二阶导数来计算!
设(xo,f(xo))是曲线y=f(x)上的定点,则该点的切线方程为:
y-f(xo)=f'(xo)·(x-xo)
上述切线方程的对于x轴的截距为:(原题没有说是否是x轴上的截距,根据题意猜,应该是x轴上的截距)
-f(xo)=f'(xo)·(x-xo),即:
x=-[f(xo)/f'(xo)]+xo,其中xo≠0,
又∵上述xo∈x,用x替换则:
u(x)=-[f(x)/f'(x)]+x
lim(x→0) u(x)/x
=lim(x→0) 1- [f(x)/xf'(x)]
考查极限:lim(x→0) f(x)/xf'(x)
∵f(0)=0,f'(0)=0
lim(x→0) f(x)/xf'(x)
=lim(x→0) f'(x)/[f'(x)+xf''(x)]
=lim(x→0) 1/{1+[xf''(x)/f'(x)]}
f''(0)=lim(x→0) [f'(x)-f'(0)]/x = lim(x→0) f'(x)/x
∴
lim(x→0) f(x)/xf'(x)
=lim(x→0) 1/{1+[xf''(x)/f'(x)]}
=1/[1+f''(0)/f''(0)]
=1/2
∴
lim(x→0) u(x)/x
=lim(x→0) 1- [f(x)/xf'(x)]
=1-(1/2)
=1/2
根据极限运算法则:
lim(x→0) x/u(x)
=2
谢谢了🙏