mapreduce中 job作业的reduce任务个数怎么确定
1个回答
展开全部
MapReduce作业提交源码分析
我们在编写MapReduce程序的时候,首先需要编写Map函数和Reduce函数。完成mapper和reducer的编写后,进行Job的配置;Job配置完成后,调用Job.submit()方法完成作业的提交。那我们思考一下,Job最终如何完成作业(job)的提交呢看粗略想一下,Job必然需要通过某种方式连接到JobTracker,因为只有这样才能将job提交到JobTracker上进行调度执行。还需要考虑一下,我们自己编写的mapper和reducer,即Jar文件如何传送到JobTracker上呢看其中有一种最简单也比较直观的方法,直接通过socket传输给JobTracker,由JobTracker再传输给TaskTracker(注意:MapReduce并没有采用这种方法)。第三个需要考虑的内容是,JobTracker如何将用户作业的配置转化成map task和reduce task。下面我们来分析一下MapReduce这些功能的实现。
首先在class Job内部通过JobClient完成作业的提交,最终由JobClient完成与JobTracker的交互功能。在JobClient的构造函数中,通过调用RPC完成与JobTracker连接的建立。
完成建立后,JobClient首先确定job相关文件的存放位置(我们上面提到mapreduce没有采用将jar即其他文件传输给JobTracker的方式,而是将这些文件保存到HDFS当中,并且可以根据用户的配置存放多份)。
我们在编写MapReduce程序的时候,首先需要编写Map函数和Reduce函数。完成mapper和reducer的编写后,进行Job的配置;Job配置完成后,调用Job.submit()方法完成作业的提交。那我们思考一下,Job最终如何完成作业(job)的提交呢看粗略想一下,Job必然需要通过某种方式连接到JobTracker,因为只有这样才能将job提交到JobTracker上进行调度执行。还需要考虑一下,我们自己编写的mapper和reducer,即Jar文件如何传送到JobTracker上呢看其中有一种最简单也比较直观的方法,直接通过socket传输给JobTracker,由JobTracker再传输给TaskTracker(注意:MapReduce并没有采用这种方法)。第三个需要考虑的内容是,JobTracker如何将用户作业的配置转化成map task和reduce task。下面我们来分析一下MapReduce这些功能的实现。
首先在class Job内部通过JobClient完成作业的提交,最终由JobClient完成与JobTracker的交互功能。在JobClient的构造函数中,通过调用RPC完成与JobTracker连接的建立。
完成建立后,JobClient首先确定job相关文件的存放位置(我们上面提到mapreduce没有采用将jar即其他文件传输给JobTracker的方式,而是将这些文件保存到HDFS当中,并且可以根据用户的配置存放多份)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询