求解 详细过程谢谢 10
展开全部
n[S(n+1)-Sn]=Sn+n(n+1)
na(n+1)=Sn+n(n+1)
Sn=n[a(n+1)-n-1]
S(n-1)=(n-1)[an-n+1-1]=(n-1)(an-n)
Sn=S(n-1)+an=an+(n-1)(an-n)=n[a(n+1)-n-1]
nan-n²+n=na(n+1)-n²-n
n[a(n+1)-an]=2n,
a(n+1)-an=2
等差数列,d=2,a1=1;
(1)an=1+(n-1)×2=2n-1;
(2)bn=[n(n+2)(2n-1)+1]/[(n+1)(n-1)]=[n(2n²+3n-2)+1]/[(n+1)(n-1)]
=[2n³+3n²-2n+1]/[n²-1]
=2n+3+4/[(n+1)(n-1)]
=2n+3+2[1/(n-1)-1/(n+1)]
Tn=2[2+3+...+n]+3(n-1)+2[(1/1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+...+1/(n-1)-1/(n+1)]
=2(n+2)(n-1)/2+3(n-1)+2[1+1/2-1/n-1/(n+1)]
=(n+5)(n-1)+3-2/n-2/(n+1)
na(n+1)=Sn+n(n+1)
Sn=n[a(n+1)-n-1]
S(n-1)=(n-1)[an-n+1-1]=(n-1)(an-n)
Sn=S(n-1)+an=an+(n-1)(an-n)=n[a(n+1)-n-1]
nan-n²+n=na(n+1)-n²-n
n[a(n+1)-an]=2n,
a(n+1)-an=2
等差数列,d=2,a1=1;
(1)an=1+(n-1)×2=2n-1;
(2)bn=[n(n+2)(2n-1)+1]/[(n+1)(n-1)]=[n(2n²+3n-2)+1]/[(n+1)(n-1)]
=[2n³+3n²-2n+1]/[n²-1]
=2n+3+4/[(n+1)(n-1)]
=2n+3+2[1/(n-1)-1/(n+1)]
Tn=2[2+3+...+n]+3(n-1)+2[(1/1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+...+1/(n-1)-1/(n+1)]
=2(n+2)(n-1)/2+3(n-1)+2[1+1/2-1/n-1/(n+1)]
=(n+5)(n-1)+3-2/n-2/(n+1)
追问
写的看不懂
有手写的吗
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询