已知:D为△ABC内一点,满足:∠CAB=51°,∠ACD=73°,∠DCB=30°,∠DBC=13°.求∠ADB=? 5

好难... 好难 展开
 我来答
我的行云笔记
高粉答主

2019-07-18 · 爱好读书的三线文艺青年
我的行云笔记
采纳数:59 获赞数:28661

向TA提问 私信TA
展开全部

//初中解法:添加辅助线

//高中解法:角元塞瓦定理,解三角方程

//下述均为角度制,为方便,一律省略°
设∠DAB=y°
则有:
(sin73/sin30)*(sin13/sin13)*[siny/sin(51-y)]=1
Algeo解方程,y=17
x=180-(13+17)=150

本题目属于“数学竞赛几何题目”,纯何解法,有难度。站在更高层次上,它属于“三角形角格点问题”。

扩展资料:

格点问题起源于以下两个问题的研究:

(1)狄利克雷除数问题,即求x>1时D2(x)=区域{1≤u≤x,l≤v≤x,uv≤x}上的格点数。1849年,狄利克雷证明了D2(x)=xlnx+(2ν一1)x+△(x),这里ν为欧拉常数,△(x)=O(x^1/2),这一问题的目的是要求出使余项估计△(x)=O(x)成立的又的下确界θ0。

(2)圆内格点问题:设x>1,A2(x)=圆内μ +ν≤x上的格点数。高斯证明了A2(x)=πx+R(x),这里R(x)=O(x^1/2),求使余项估计R(x)=O(x)成立的λ的下确界α的问题,称之为圆内格点问题或高斯圆问题。

1903年,Г.Ф.沃罗诺伊证明了θ≤1/3;1906年,谢尔品斯基证明了α≤1/3;20世纪30年代,J.G.科普特证明了α≤37/112,θ≤27/82;

1934-1935年,E.C.蒂奇马什证明了α≤15/46;1942年,华罗庚证明了α≤13/40;1963年陈景润、尹文霖证明了α≤12/37;1950年迟宗陶证明了θ≤15/46,1953年H.里歇证明了同样的结果;

1963年,尹文霖证明了θ≤12/37,1985年,Г.A.科列斯尼克证明了θ≤139/429;1985年,W.G.诺瓦克证明了α≤139/429。在下限方面,1916年,哈代已证明α≥1/4;1940年,

A.E.英厄姆证明了θ≥1/4。人们还猜测θ=α=1/4,但至今未能证明。由此直接推广出k维除数问题,球内格点问题以及k维椭球内的格点问题等。

格点问题所涉及到的知识点通常与抽屉原理和图论知识结合在一起,一般来说与整数的奇偶性、整除性等联系十分紧密。

参考资料:百度百科-格点问题

徐少2046
高粉答主

2017-09-25 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.3万
采纳率:90%
帮助的人:4419万
展开全部

150°
解析:


//初中解法:添加辅助线
//高中解法:角元塞瓦定理,解三角方程
//下述均为角度制,为方便,一律省略°
设∠DAB=y°
则有:
(sin73/sin30)*(sin13/sin13)*[siny/sin(51-y)]=1
Algeo解方程,y=17
~~~~~~~~~
x=180-(13+17)=150
~~~~~~~~~
PS:
(1) 本题目属于“数学竞赛几何题目”,纯何解法,有难度。
(2) 站在更高层次上,它属于“三角形角格点问题”。

追答
150°
解析:
认真回答了,结果被百度发疯删掉了。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
爱喝白酒的99
2017-12-30
知道答主
回答量:1
采纳率:0%
帮助的人:924
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友89096ec
2017-12-09
知道答主
回答量:1
采纳率:0%
帮助的人:928
展开全部
请公布纯几何解法。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
感伤哪里去了
2017-11-24
知道答主
回答量:7
采纳率:0%
帮助的人:6413
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 4条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式