高等数学 求极限
2017-09-16
展开全部
求极限的各种方法1.约去零因子求极限例1:求极限11lim41xxx【说明】1x表明1与x无限接近,但1x,所以1x这一零因子可以约去。【解】6)1)(1(lim1)1)(1)(1(lim2121xxxxxxxx=42.分子分母同除求极限例2:求极限13lim323xxxx【说明】型且分子分母都以多项式给出的极限,可通过分子分母同除来求。【解】3131lim13lim311323xxxxxxx【注】(1)一般分子分母同除x的最高次方;(2)nmbanmnmbxbxbaxaxannmmmmnnnnx0lim0110113.分子(母)有理化求极限例3:求极限)13(lim22xxx【说明】分子或分母有理化求极限,是通过有理化化去无理式。【解】13)13)(13(lim)13(lim22222222xxxxxxxxxx0132lim22xxx例4:求极限30sin1tan1limxxxx【解】)sin1tan1(sintanlimsin1tan1lim3030xxxxxxxxxx41sintanlim21sintanlimsin1tan11lim30300xxxxxxxxxxx【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sinlim0xxx和exnxxxnnxx10)1(lim)11(lim)11(lim,第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。例5:求极限xxxx11lim【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X1,最后凑指数部分。【解】2221212112111lim121lim11limexxxxxxxxxxx例6:(1)xxx211lim;(2)已知82limxxaxax,求a。5.用等价无穷小量代换求极限【说明】(1)常见等价无穷小有:当0x时,~)1ln(~arctan~arcsin~tan~sin~xxxxxx1ex,abxaxxxb~11,21~cos12;(2)等价无穷小量代换,只能代换极限式中的因式..;(3)此方法在各种求极限的方法中应作为首选.....。例7:求极限0ln(1)lim1cosxxxx【解】002ln(1)limlim211cos2xxxxxxxx.例8:求极限xxxx30tansinlim【解】xxxx30tansinlim613lim31coslimsinlim222102030xxxxxxxxxx6.用罗必塔法则求极限例9:求极限220)sin1ln(2coslnlimxxxx【说明】或00型的极限,可通过罗必塔法则来求。【解】220)sin1ln(2coslnlimxxxxxxxxxx2sin12sin2cos2sin2lim203sin112cos222sinlim20xxxxx【注】许多变动上显的积分表示的极限,常用罗必塔法则求解例10:设函数f(x)连续,且0)0(f,求极限.)()()(lim000xxxdttxfxdttftx【解】由于000)())(()(xxxutxduufduufdttxf,于是xxxxxxxduufxdtttfdttfxdttxfxdttftx0000000)()()(lim)()()(lim=xxxxxfduufxxfxxfdttf000)()()()()(lim=xxxxxfduufdttf000)()()(lim=)()()(lim000xfxduufxdttfxxx=.21)0()0()0(fff7.用对数恒等式求)()(limxgxf极限例11:极限xxx20)]1ln(1[lim【解】xxx20)]1ln(1[lim=)]1ln(1ln[20limxxxe=.2)1ln(2lim)]1ln(1ln[2lim00eeexxxxxx【注】对于1型未定式)()(limxgxf的极限,也可用公式)()(limxgxf)1(=)
2018-07-30 · 知道合伙人教育行家
关注
展开全部
第二行到第三行,
那个+2,
怎么就凭空消失了,
如果保留+2,
你看看答案不就是1了吗?
那个+2,
怎么就凭空消失了,
如果保留+2,
你看看答案不就是1了吗?
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分子分母同乘根号x(x+1)+x,就成了x/根号x(x+1)+x,再同除x就行,答案1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |