1/(n+1)(n+2)(n+3)数列求和 5
4个回答
展开全部
1/(n+1)(n+2)(n+3)
=1/2[1/(n+1)(n+2)-1/(n+2)(n+3)]
=1/2[1/(n+1)-1/(n+2)-1/(n+2)+1/(n+3)]
∑1/(n+1)(n+2)(n+3)
=1/2{(1/2-1/3-1/3+1/4)+(1/3-1/4-1/4+1/5)+(1/4-1/5-1/5+1/6)+(1/6-1/7-1/7+1/8)+........+[1/(n+1)-1/(n+2)-1/(n+2)+1/(n+3)]}
=1/2{1/2-1/3-1/(n+2)+1/(n+3)}
扩展资料
数列求和常用方法有:
通过恒等变形化为可用极限四则运算法则的情形;
适当放大缩小法则;
化为积分和利用定积分求极限;
利用数值级数求和的方法。
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可
2017-04-21
展开全部
1/(n+1)(n+2)(n+3)
=1/2[1/(n+1)(n+2)-1/(n+2)(n+3)]
=1/2[1/(n+1)-1/(n+2)-1/(n+2)+1/(n+3)]
∑1/(n+1)(n+2)(n+3)
=1/2{(1/2-1/3-1/3+1/4)+(1/3-1/4-1/4+1/5)+(1/4-1/5-1/5+1/6)
+(1/6-1/7-1/7+1/8)+。。。+[1/(n+1)-1/(n+2)-1/(n+2)+1/(n+3)]}
=1/2{1/2-1/3-1/(n+2)+1/(n+3)}
=1/2[1/(n+1)(n+2)-1/(n+2)(n+3)]
=1/2[1/(n+1)-1/(n+2)-1/(n+2)+1/(n+3)]
∑1/(n+1)(n+2)(n+3)
=1/2{(1/2-1/3-1/3+1/4)+(1/3-1/4-1/4+1/5)+(1/4-1/5-1/5+1/6)
+(1/6-1/7-1/7+1/8)+。。。+[1/(n+1)-1/(n+2)-1/(n+2)+1/(n+3)]}
=1/2{1/2-1/3-1/(n+2)+1/(n+3)}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2/[(n+1)(n+2)(n+3)]=1/[(n+1)(n+2)]-1/[(n+2)(n+3)]=1/(n+1)-1/(n+2)-[1/(n+2)-1/(n+3)]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询