解析:
0<x2时,tanx>x>sinx
~~~~~~~~~~~
证明:
考虑函数f(x)=tanx-x(0≤x<π/2)
f'(x)
=1/cos²x-1
=(1-cos²x)/cos²x
=tan²x
≥0
∴ f(x)在[0,π/2)上单调递增
∴ f(x)≥f(0)
即,tanx-x≥0
显然,π/2>x>0时,tanx>x
~~~~~~~~~~~~
考虑函数g(x)=x-sinx(π/2>x≥0)
g'(x)
=1-cosx
≥0
∴ g(x)在[0,π/2)上单调递增
∴ g(x)≥g(0)
即,x-sinx≥0
显然,π/2>x>0时,x>sinx
~~~~~~~~~~~~
综上,
0<x2时,tanx>x>sinx