高数问题 不定积分
1个回答
展开全部
设u=√[(1+x)/x],则xu^2=1+x,于是x=1/(u^2-1),
dx=-2udu/(u^2-1)^2,
原式=∫-2uln(1+u)du/(u^2-1)^2
=ln(1+u)/(u^2-1)-∫du/[(u-1)(u+1)^2]
=ln(1+u)/(u^2-1)-(1/4)∫[1/(u-1)-1/(u+1)-2/(u+1)^2]du
=ln(1+u)/(u^2-1)-(1/4){ln[(u-1)/(u+1)]+2/(u+1)}+c
=xln{1+√[(1+x)/x]}-(1/4)ln({√[(1+x)/x]-1}/{√[(1+x)/x]+1})-1/{2[√((1+x)/x)+1]}+c
dx=-2udu/(u^2-1)^2,
原式=∫-2uln(1+u)du/(u^2-1)^2
=ln(1+u)/(u^2-1)-∫du/[(u-1)(u+1)^2]
=ln(1+u)/(u^2-1)-(1/4)∫[1/(u-1)-1/(u+1)-2/(u+1)^2]du
=ln(1+u)/(u^2-1)-(1/4){ln[(u-1)/(u+1)]+2/(u+1)}+c
=xln{1+√[(1+x)/x]}-(1/4)ln({√[(1+x)/x]-1}/{√[(1+x)/x]+1})-1/{2[√((1+x)/x)+1]}+c
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询