
设定义域为R的函数y = f (x)、y = g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y = x对称,
设定义域为R的函数y=f(x)、y=g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y=x对称,若g(5)=1999,那么f(4)=()...
设定义域为R的函数y = f (x)、y = g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y = x对称,若g(5) = 1999,那么f(4)=( )
展开
1个回答
展开全部
解:∵y = f(x-1)和y = g-1(x-2)函数的图像关于直线y = x对称,
∴y = g-1(x-2) 反函数是y = f(x-1),而y = g-1(x-2)的反函数是:y = 2 + g(x), ∴f(x-1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=2001
故f(4) = 2001
∴y = g-1(x-2) 反函数是y = f(x-1),而y = g-1(x-2)的反函数是:y = 2 + g(x), ∴f(x-1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=2001
故f(4) = 2001
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询