展开全部
解:
令:F(x,y,z)=z³-2xz+y=0
F'x=-2z
F'y=1
F'z=3z²-2x
根据隐函数求偏导公式:
∂z/∂x
= - F'x/F'z
= 2z/(3z²-2x)
∂z/∂y
= - F'y/F'z
= -1/(3z²-2x)
= - (3z²-2x)^(-1)
∂²z/∂x²
={2(∂z/∂x)(3z²-2x)-2z·[6z(∂z/∂x)-2]}/(3z²-2x)²
=[4z-12z²(2z/(3z²-2x))+4z]/(3z²-2x)²
∂²z/∂y²
=6z·[-1/(3z²-2x)]/(3z²-2x)²
=-6z/(3z²-2x)³
令:F(x,y,z)=z³-2xz+y=0
F'x=-2z
F'y=1
F'z=3z²-2x
根据隐函数求偏导公式:
∂z/∂x
= - F'x/F'z
= 2z/(3z²-2x)
∂z/∂y
= - F'y/F'z
= -1/(3z²-2x)
= - (3z²-2x)^(-1)
∂²z/∂x²
={2(∂z/∂x)(3z²-2x)-2z·[6z(∂z/∂x)-2]}/(3z²-2x)²
=[4z-12z²(2z/(3z²-2x))+4z]/(3z²-2x)²
∂²z/∂y²
=6z·[-1/(3z²-2x)]/(3z²-2x)²
=-6z/(3z²-2x)³
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询