设函数z=f(xe^y,x-y),其中f有连续二阶偏导数

设函数z=f(xe^y,x-y),其中f有连续二阶偏导数... 设函数z=f(xe^y,x-y),其中f有连续二阶偏导数 展开
 我来答
帐号已注销
2021-08-02 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

函数z=f(xe^y,x-y),其中f有连续二阶偏导数

δz/δx=f1(u,x,y)e^y+f2(u,x,y)

δz/δy=f1(u,x,y)xe^y+f3(u,x,y)

δ^2z/δx^2=[f11(u,x,y)e^y+f12(u,x,y)]e^y+ +f12(u,x,y)e^y+f22(u,x,y)

δ^2z/δxδy=[f11(u,x,y)xe^y+f13(u,x,y)]e^y+f1(u,x,y)e^y +f12(u,x,y)xe^y+f23(u,x,y)

δ^2z/δy^2=[f11(u,x,y)xe^y+f13(u,x,y)]xe^y+f1(u,x,y)xe^y +f13(u,x,y)xe^y+f33(u,x,y)。

x方向的偏导

设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点。把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数,记作f'x(x0,y0)或函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
创作者AHLhc3019hw
高粉答主

2020-07-22 · 学习数学思维,感受数学乐趣
创作者AHLhc3019hw
采纳数:46 获赞数:64900

向TA提问 私信TA
展开全部

函数z=f(xe^y,x-y),其中f有连续二阶偏导数。

 δz/δx=f1(u,x,y)e^y+f2(u,x,y)

 δz/δy=f1(u,x,y)xe^y+f3(u,x,y)

δ^2z/δx^2=[f11(u,x,y)e^y+f12(u,x,y)]e^y+ +f12(u,x,y)e^y+f22(u,x,y)

 δ^2z/δxδy=[f11(u,x,y)xe^y+f13(u,x,y)]e^y+f1(u,x,y)e^y +f12(u,x,y)xe^y+f23(u,x,y)

δ^2z/δy^2=[f11(u,x,y)xe^y+f13(u,x,y)]xe^y+f1(u,x,y)xe^y +f13(u,x,y)xe^y+f33(u,x,y)。

扩展资料:

偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。

如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
吉禄学阁

2018-05-18 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62493

向TA提问 私信TA
展开全部

如上图所示。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式