怎样应用物理学史进行科学方法教育

 我来答
zgrbkr
高能答主

2017-12-30 · 有什么不懂的尽管问我
知道顶级答主
回答量:7.9万
采纳率:94%
帮助的人:8135万
展开全部
现代物理教育观认为,知识是学生发展的载体,在教育教学过程中,最重要的不是学生学到了多少知识,而是对科学的亲近感,是掌握探索客观世界、进行科学研究的基本方法。物理学科的教学,应该把科学知识的传授和自然科学一般研究方法的训练很好地结合起来。
在中学物理教学中涉及到的自然科学的一般研究方法,主要有观察、实验、抽象、理想化、比较、类比、假说、模型、数学方法等等。在物理课堂教学中,充分利用物理学史对学生进行自然科学的一般方法的训练是一个重要的途径。现举两例加以说明。

一、利用物理教材中介绍的典型实验进行方法教育
物理学史上不少著名的实验,如库仑扭称实验、卢瑟福-粒子散射实验、查德威克发现中子的实验等,限于设备,目前一般中学不能演示,但在教材里还是写上了。教材这样做,除了考虑到它们是重要规律,理论基础,并且有助于发展思维,还考虑到可以使学生从这些具体实例中领会物理实验的一般方法。例如,每个实验都包括提出实验任务,确定实验方法并研究如何实现,对得到的实验资料进行逻辑加工得出结论等阶段;实验的每个阶段都跟理论紧密交织着,都要用已有的理论来指导;科学仪器能帮助人们克服感觉器官的局限,使感性认识更加客观、精细、准确,因而科学仪器的设计,使用对实验的成功起重要(有时甚至是决定性的)作用。
在课堂教学中,我们就要充分认识到这些著名实验的方法教育功能,要舍得化一些时间和功夫向学生介绍这些实验以及与这些实验相关的历史背景,使学生能从物理学史中得到震撼,感受物理学实验方法的魅力。
例如,库仑扭秤实验的教学,课本上只是简单地向学生展示了该实验的装置,并做了简要的介绍,这一实验背后的许多知识学生是无从知道的。早在库仑进行扭秤实验的三十年前(即1755年),富兰克林就发现在带电的金属空腔中悬吊一个带电的小球时,带电小球不受力的现象,为了解释这一现象,他请别人帮着分析和演算,首先得出了电荷之间的相互作用力与电荷之间的距离平方成反比的假说。这个假说是否正确?是否应写成F∝1/r(2+δ)的形式?为了验证这一关系,1769年,罗宾逊采用直接测量的方法对两个点电荷之间的作用力进行了测定,发现当两个电荷带同种电荷时,测出的δ值大于零,当两个电荷带异种电荷时,测出的δ值小于零,δ值的数值约为0.06左右,因此他推测δ的值应为零。1785年,库仑通过扭秤实验,做出δ≤4×10-2。在此之前的1772年,卡文迪许采用测电荷的方法,给两个同心且相连的金属球充电,达到一定的电压后,断开两球之间的连线,将一个球移到无限远处放电,通过测量另一个球的带电量来验证平方反比定律。他做出的结果是δ≤2×10-2。1864年,麦克斯韦改进卡文迪许的方法,通过测带电球的电位的方法,一下子将δ的测量值提高到δ≤5×10-5的量级。从此之后,关于δ值的测定都是由麦克斯韦的实验出发,加以改造,来提高测量的精度。目前最精确的测量是由三个物理学家在1980年完成的,测得δ≤10-19。
为什么要进行如此长达二百多年的测量?为什么达到10-19的数量级后还不肯罢休?那是因为所有的电磁学的规律都是由平方反比规律为前提建立起来的,在近代物理中也有很大的关系,包括光子的静止质量是否为零。尽管目前的测量说明电荷之间的相互作用十分趋近平方反比规律,在平时的物理学习中完全可以这样使用该规律,但从科学的角度看,我们离平方反比定律还有一定的距离,甚至可能就是因为这一点距离,导致物理理论的重大影响。当我们在课堂教学中向学生介绍这些物理学家一步步的实验设计以及其中包含的丰富的科学研究的方法时,当我们向学生介绍为什么科学家要千方百计地进行δ值的精确测定时,学生必定会产生心灵上的震撼,这是简单的说教和照本宣科所产生的效果不能比拟的,科学品德教育也有机地渗透在物理学史的学习之中。

二、利用物理学史揭示典型的物理方法
例如唯象的方法、模型的方法,是物理学研究的重要方法之一,特别是研究物质结构类的课题时,常用此法。在学习原子结构的知识时,就要充分研究历史原子结构的发现历史,并通过教学使学生能通过对学史的学习体会物理学的典型方法。其中主要的物理史料有:
1897年,发现电子之后,英国的J·J·汤姆逊就认为电子应该是原子的一部分。
1901年,法国的皮兰在一次讲演中,曾提到过“原子的结构有可能具有行星式结构”,这是一种直觉的猜测,所以也没有引起人们的注意。
1903年,汤姆逊提出了“均匀模型”,也称“葡萄干面包模型”。这一设想认为正电是一个均匀球体,而电子则均匀地分布在正电球体中。
1904年,日本的长冈半太郎认为电子是个实体,带正电的物体也是个实体,两者应该分开,受麦克斯韦的论文《论土星环的稳定性》的影响,提出具有土星式结构的假说。
1909年,卢瑟福的两位助手盖革和马斯登,在卢瑟福的指导下,做了a粒子散射实验,发现了一个重要的现象,就是大角度散射,有的a粒子的散射角可超过90度。实验结果,发现8000个a粒子中只有一个粒子发生大角度散射。这个结果用以前的唯象模型都无法解释。盖革与马斯登为此请教了导师卢瑟福,卢瑟福立即意识到,要解释这一大角度散射的结果,只有正电集中在一个很小的范围内,由于库仑静电斥力,才能使a粒子产生大角度散射。于是在1911年,卢瑟福提出了“原子的有核模型”,认为正电集中在核里,电子绕核运动。
1913年,盖革与马斯登通过实验证明了卢瑟福提出的模型是对的。
从上面这一非常简要的回顾中,可以清楚地看出,当研究物质结构类课题时,模型方法是个很重要的方法,它往往很直观,可以让人们想象出来。在应用模型方法时,一开始往往都是唯象的,根据某一个或某些现象,凭研究者的直觉、想象,有时还采用类比的方法,借助于其他学科其他分支学科中对某些问题的结论或图象,描绘出作者想要给出的图象、模型,用数学来处理有关问题,能解释一些现象,并能做出预言,那么这一假说就走上唯理的道路,使之上升为理论。
物理学史在物理教学中有着十分重要的作用,即使在学生基本的科学研究的方法的培养方面,其作用也远不止以上两点。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式