一道高数极限题求解!
lim(n->∞){ [ n^3 -n^2 + (1/2)n] .e^(1/n) - √(1+n^6) }
consider
let
y=1/x
y->0
e^y = 1+y+(1/2)y^2 +(1/6)y^3 +o(y^3)
[ 1 -y + (1/2)y^2] .e^y
=[ 1 -y + (1/2)y^3] .[1+y+(1/2)y^2 +(1/6)y^3 +o(y^3) ]
=[ 1+y+(1/2)y^2 +(1/6)y^3 ] - y[1+y+(1/2)y^2 +(1/6)y^3 ]
+(1/2)y^2.[ 1+y+(1/2)y^2 +(1/6)y^3 ] +o(y^3)
=[ 1+y+(1/2)y^2 +(1/6)y^3 ] + [-y-y^2-(1/2)y^3+o(y^3) ]
+[ (1/2)y^2+(1/2)y^3+o(y^3) ] +o(y^3)
=1 + (1/6)y^3 +o(y^3)
√(1+y^6) = 1 +(1/2)y^6 +o(y^6) = 1+ o(y^3)
[ 1 -y + (1/2)y^2] .e^y - √(1+y^6) = (1/6)y^3 +o(y^3)
lim(x->∞){ [ x^3 -x^2 + (1/2)x] .e^(1/x) - √(1+x^6) }
=lim(y->0){ [ 1 -y + (1/2)y^2] .e^y - √(1+y^6) } / y^3
=lim(y->0) (1/6)y^3 / y^3
=1/6
=>
lim(n->∞){ [ n^3 -n^2 + (1/2)n] .e^(1/n) - √(1+n^6) } =1/6