已知f(x)=e的ax次方-e的-ax次方+2(a∈R),若f(3)=1,则f(-3)=?
1个回答
展开全部
(1)
f'(x)=e^x-a
当a≤0时,f'(x)=e^x-a>0恒成立
f(x)单调递增区间为定义域(-∞,+∞)
当a>0时,f'(x)>0即e^x>a解得x>lna
∴f(x)单调递增区间为(lna,+∞)
单调递减区间为(-∞,lna)
(2)
当x∈[0,+∝﹚时,都有f(x)≥0成立
x=0时,f(0)=1>0成立
x>0时,f(x)≥0即e^x-ax≥0
即a≤e^/x
设g(x)=e^x/x,需a≤g(x)min
g'(x)=(xe^x-e^x)/x²=(x-1)e^x/x²
∴0<x<1时,g'(x)<0,x>1时,g'(x)>0
∴g(x)min=g(1)=e
∴a≤e
即实数a的取值范围是(-∞,e]
f'(x)=e^x-a
当a≤0时,f'(x)=e^x-a>0恒成立
f(x)单调递增区间为定义域(-∞,+∞)
当a>0时,f'(x)>0即e^x>a解得x>lna
∴f(x)单调递增区间为(lna,+∞)
单调递减区间为(-∞,lna)
(2)
当x∈[0,+∝﹚时,都有f(x)≥0成立
x=0时,f(0)=1>0成立
x>0时,f(x)≥0即e^x-ax≥0
即a≤e^/x
设g(x)=e^x/x,需a≤g(x)min
g'(x)=(xe^x-e^x)/x²=(x-1)e^x/x²
∴0<x<1时,g'(x)<0,x>1时,g'(x)>0
∴g(x)min=g(1)=e
∴a≤e
即实数a的取值范围是(-∞,e]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询