2个回答
展开全部
(4) z = e^(xy)sin(x+y)
∂z/∂x = sin(x+y)∂[e^(xy)]/∂x + e^(xy)∂[sin(x+y)]/∂x
= sin(x+y) ye^(xy) + e^(xy)cos(x+y)
= ye^(xy)sin(x+y) + e^(xy)cos(x+y)
同理 ∂z/∂y = xe^(xy)sin(x+y) + e^(xy)cos(x+y)
2. f = ln[x+y/(2x)]
fy(x, y) = [1/(2x)]/[x+y/(2x)] = 1/(2x^2 + y)
fy(0, 1) = 1/1 = 1
∂z/∂x = sin(x+y)∂[e^(xy)]/∂x + e^(xy)∂[sin(x+y)]/∂x
= sin(x+y) ye^(xy) + e^(xy)cos(x+y)
= ye^(xy)sin(x+y) + e^(xy)cos(x+y)
同理 ∂z/∂y = xe^(xy)sin(x+y) + e^(xy)cos(x+y)
2. f = ln[x+y/(2x)]
fy(x, y) = [1/(2x)]/[x+y/(2x)] = 1/(2x^2 + y)
fy(0, 1) = 1/1 = 1
追问
第4小题的详细过程有吗,对x,y求导是怎么得到那个答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询