线性代数问题?
n阶矩阵A可对角化一定是要有n个无关的特征向量因为对角阵中每一个元素都对应一个特征向量,特征向量都满足Ax=xa(常数),所以彼此间线性无关相关吗?如果有错能帮我改一下,...
n阶矩阵A可对角化一定是要有n个无关的特征向量
因为对角阵中每一个元素都对应一个特征向量,特征向量都满足Ax=xa(常数),所以彼此间线性无关相关吗?
如果有错能帮我改一下,再帮我理理思路吗?谢谢 展开
因为对角阵中每一个元素都对应一个特征向量,特征向量都满足Ax=xa(常数),所以彼此间线性无关相关吗?
如果有错能帮我改一下,再帮我理理思路吗?谢谢 展开
1个回答
展开全部
选c
这个问题有很多种思考方法。
1、直接利用线性相关性的定义。
令这n+1个向量的组合等于0,得到一个n+1元的齐次线性方程组,由于向量是n维向量,所以该方程组只有n个方程,方程的个数少于未知数的个数,从而方程组有非零解,即存在不全为零的数,使得向量的组合等于0,故向量组线性相关。
2、用向量组的秩来考虑。
向量组线性相关的充要条件是向量组的秩小于向量的个数。
你如果将n+1个n维向量拼成一个矩阵,则该矩阵为一个n行n+1列的矩阵,故矩阵的秩必小于n+1,即向量组的秩小于n+1,小于向量的个数,所以向量组线性相关。
3、还可以从n维向量空间的维数来考虑,n维向量空间中,任意n+1个向量都是线性相关的。
这个问题有很多种思考方法。
1、直接利用线性相关性的定义。
令这n+1个向量的组合等于0,得到一个n+1元的齐次线性方程组,由于向量是n维向量,所以该方程组只有n个方程,方程的个数少于未知数的个数,从而方程组有非零解,即存在不全为零的数,使得向量的组合等于0,故向量组线性相关。
2、用向量组的秩来考虑。
向量组线性相关的充要条件是向量组的秩小于向量的个数。
你如果将n+1个n维向量拼成一个矩阵,则该矩阵为一个n行n+1列的矩阵,故矩阵的秩必小于n+1,即向量组的秩小于n+1,小于向量的个数,所以向量组线性相关。
3、还可以从n维向量空间的维数来考虑,n维向量空间中,任意n+1个向量都是线性相关的。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询