∫x²/(x^4+x²+1)dx怎么做啊,求助
1个回答
展开全部
令A=∫x^2/(x^4+x^2+1)dx,B=∫1/(x^4+x^2+1)dx
A+B=∫(x^2+1)/(x^4+x^2+1)dx
=∫(1+1/x^2)/(x^2+1+1/x^2)dx
=∫d(x-1/x)/[(x-1/x)^2+3]
=(1/√3)*arctan[(x-1/x)/√3]+C1,其中C1是任意常数
A-B=∫(x^2-1)/(x^4+x^2+1)dx
=∫(1-1/x^2)/(x^2+1+1/x^2)dx
=∫d(x+1/x)/[(x+1/x)^2-1]
=∫d(x+1/x)/(x+1/x+1)(x+1/x-1)
=(1/2)*∫[1/(x+1/x-1)-1/(x+1/x+1)]d(x+1/x)
=(1/2)*[ln|x+1/x-1|-ln|x+1/x+1|]+C2,其中C2是任意常数
所以A=(1/2)*[(A+B)+(A-B)]
=(1/2)*{(1/√3)*arctan[(x-1/x)/√3]+(1/2)*[ln|x+1/x-1|-ln|x+1/x+1|]+C
=(√3/6)*arctan[(x-1/x)/√3]+(1/4)*ln|x+1/x-1|-(1/4)*ln|x+1/x+1|+C,其中C是任意常数
A+B=∫(x^2+1)/(x^4+x^2+1)dx
=∫(1+1/x^2)/(x^2+1+1/x^2)dx
=∫d(x-1/x)/[(x-1/x)^2+3]
=(1/√3)*arctan[(x-1/x)/√3]+C1,其中C1是任意常数
A-B=∫(x^2-1)/(x^4+x^2+1)dx
=∫(1-1/x^2)/(x^2+1+1/x^2)dx
=∫d(x+1/x)/[(x+1/x)^2-1]
=∫d(x+1/x)/(x+1/x+1)(x+1/x-1)
=(1/2)*∫[1/(x+1/x-1)-1/(x+1/x+1)]d(x+1/x)
=(1/2)*[ln|x+1/x-1|-ln|x+1/x+1|]+C2,其中C2是任意常数
所以A=(1/2)*[(A+B)+(A-B)]
=(1/2)*{(1/√3)*arctan[(x-1/x)/√3]+(1/2)*[ln|x+1/x-1|-ln|x+1/x+1|]+C
=(√3/6)*arctan[(x-1/x)/√3]+(1/4)*ln|x+1/x-1|-(1/4)*ln|x+1/x+1|+C,其中C是任意常数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询