高数曲线积分?

 我来答
夔自浪7111
2019-12-25 · TA获得超过6179个赞
知道大有可为答主
回答量:1万
采纳率:62%
帮助的人:674万
展开全部
一类曲线是对曲线的长度,二类是对x,y坐标。怎么理解呢?告诉你一根线的线密度,问你线的质量,就要用一类。告诉你路径曲线方程,告诉你x,y两个方向的力,求功,就用二类。二类曲线也可以把x,y分开,这样就不难理解一二类曲线积分之间的关系了,它们之间就差一个余弦比例。 一二类曲面积分也是一样的。一类是对面积的积分,二类是对坐标的。告诉你面密度,求面质量,就用一类。告诉你x,y,z分别方向上的流速,告诉你面方程,求流量,就用第二类。同理,x,y,z方向也是可以分开的,分开了也就不难理解一二类曲面积分的关系了。 你要把以上两点都能理解的话,再去看高斯公式与流量,斯托克斯公式与旋度,这两个是线面体积分转化的两个公式,都理解了就没问题了。 学积分,重要的就是要理解:积分就等于是求积(乘法的积)。积分就是乘法。因为变量在连续变化,我不能直接乘,所以有了微积分来微元了再乘。一类线面积分就是函数和线面乘,二类线面积分就是函数和坐标乘。 不理解了,大家共同探讨。 以上仅代表个人观点。
帐号已注销
2019-12-25 · TA获得超过5323个赞
知道大有可为答主
回答量:4533
采纳率:90%
帮助的人:334万
展开全部
曲线,是微分几何学研究的主要对象之一。直观上,曲线可看成空间质点运动的轨迹。微分几何就是利用微积分来研究几何的学科。为了能够应用微积分的知识,我们不能考虑一切曲线,甚至不能考虑连续曲线,因为连续不一定可微。这就要我们考虑可微曲线。但是可微曲线也是不太好的,因为可能存在某些曲线,在某点切线的方向不是确定的,这就使得我们无法从切线开始入手,这就需要我们来研究导数处处不为零的这一类曲线,我们称它们为正则曲线。正则曲线才是经典曲线论的主要研究对象。
按照经典的定义,从(a,b)到R3中的连续映射就是一条曲线,这相当于是说:
(1)R3中的曲线是一个一维空间的连续像,因此是一维的。
(2)R3中的曲线可以通过直线做各种扭曲得到。
(3)说参数的某个值,就是说曲线上的一个点,但是反过来不一定,因为我们可以考虑自交的曲线。
微分几何就是利用微积分来研究几何的学科。为了能够应用微积分的知识,我们不能考虑一切曲线,甚至不能考虑连续曲线,因为连续不一定可微。这就要我们考虑可微曲线。但是可微曲线也是不太好的,因为可能存在某些曲线,在某点切线的方向不是确定的,这就使得我们无法从切线开始入手,这就需要我们来研究导数处处不为零的这一类曲线,我们称它们为正则曲线。 正则曲线才是经典曲线论的主要研究对象。
曲线:任何一根连续的线条都称为曲线。包括直线、折线、线段、圆弧等。曲线是1-2维的图形,参考《分数维空间》。 处处转折的曲线一般具有无穷大的长度和零的面积,这时,曲线本身就是一个大于1小于2维的空间。微分几何学研究的主要对象之一。直观上,曲线可看成空间质点运动的轨迹。曲线的更严格的定义是区间α,b)到E3中的映射r:α,b)E3。有时也把这映射的像称为曲线。
具体地说,设Oxyz是欧氏空间E3中的笛卡儿直角坐标系,r为曲线C上点的向径,于是有。上式称为曲线C的参数方程,t称为曲线C的参数,并且按照参数增加的方向自然地确定了曲线C的正向(图1)。曲线论中常讨论正则曲线,即其三个坐标函数x(t),y(t),z(t)的导数均连续且对任意t不同时为零的曲线。对于正则曲线,总可取其弧长s作为参数,它称为自然参数或弧长参数。弧长参数s用 来定义,它表示曲线C从r(α)到r(t)之间的长度,以下还假定曲线C的坐标函数都具有三阶连续导数,即曲线是C3阶的。
希望我能帮助你解疑释惑。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友439ec44
2019-12-25 · TA获得超过3153个赞
知道小有建树答主
回答量:446
采纳率:44%
帮助的人:54.1万
展开全部
(个人愚见,希望能对你有所帮助)此类题目,解答有两种。第一种,可以将x=y²视为参数方程形式,代入到曲线积分式中,转化为对y或x的一元定积分(要注意线段的方向,对应定积分的积分上下限)。第二种方法,观察P(x,y)和Q(x,y),如果补充直线段,使之构成闭合曲线,考虑格林公式,转化为二重积分进行计算。选取合适的方法能够简化计算。
更多追问追答
追问
第二个方法可以给个过程吗
追答
好的,请稍等,我找一下纸笔
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式