矽卡岩型金-(铜)矿床
2020-01-15 · 技术研发知识服务融合发展。
一、内容概述
矽卡岩是指高温环境下,通过火成岩交代原始富碳酸盐岩形成的,一般富含Fe、Al或Mn的钙或镁硅酸盐岩石(Burt,1977,1982;Einaudi et al.,1982)。矽卡岩既可以是岩浆成因的,也可以是变质成因的。形成矽卡岩的主要作用有不纯碳酸盐岩的变质重结晶作用、不同岩性岩石之间的双交代作用以及岩浆热液和变质热液的渗滤交代作用等。基于围岩类型和蚀变矿物组合可将矽卡岩分为两大类:钙矽卡岩与镁矽卡岩(赵一鸣等,1990)。当矽卡岩中富集了有价值的矿物时,便成为矽卡岩矿床。根据具经济价值的金属矿物不同,矽卡岩矿床可划分为 Fe、Cu、Mo、W、Zn-Pb、Sn和Au等不同类型(Ettlinger et al.,1989;Theodore et al.,1991)。
世界范围的矽卡岩金矿床主要分布在环太平洋成矿带,地跨亚、美、澳三大洲的长约40000 km的20多个沿岸国家(Ray et al.,1990;赵一鸣等,1991)。这一规律性的分布,暗示了矽卡岩金矿床的形成与特定的构造环境有关。自板块学说诞生以来,中外学者(尤其是国外学者)就试图运用板块构造理论建立比较统一的模式,来阐述矽卡岩型矿床形成的可能构造背景(板块构造环境)。例如,Einaudi et al.(1981)系统讨论了矽卡岩矿床形成的板块构造背景,认为大洋岛弧、大陆边缘岩浆弧和造山期后大陆环境下均有利于矽卡岩型矿床的形成。
大量研究表明:矽卡岩矿床均与侵入岩密切相关,不同来源和成因的侵入岩产于特定的构造环境,因此矽卡岩矿床的构造背景研究一直得到地质学者的关注。矽卡岩矿床组合与特定构造环境密切相关,综合矽卡岩矿床的成矿元素组合、与成矿有关的岩体成分和区域地质资料,有助于识别矽卡岩矿床的构造背景(图1)。研究表明,矽卡岩金矿可以形成于大洋火山岛弧的弧后盆地(图1A)。大多数矽卡岩矿床与大陆地壳俯冲的岩浆弧有关,与成矿有关的岩体成分变化较大,岩性为花岗闪长岩和花岗岩,矽卡岩金矿多与还原性岩体有关(图1B)。稳定大陆地壳俯冲至俯冲后构造的过渡环境的研究较少,与低角度俯冲相关的侵入岩源区包含有更多地壳混入,大洋俯冲楔的拆沉可能导致形成局部裂谷,岩浆弧可以很宽或迁移到内陆,成矿岩体为二长岩和花岗岩,常形成斑岩钼矿床、矽卡岩钼或钨钼矿床及少量锌、铋、铜和锌,为矽卡岩多金属矿床,部分矿床局部富金(图1C)。与软流圈上涌有关的裂谷环境多与走滑断裂有关,成矿岩体为花岗岩,含有白云母、黑云母、暗灰色石英巨晶、晶洞和云英岩化蚀变,常形成矽卡岩型锡矿床,演化花岗岩富含W、Be、B、Li、Bi、Zn、Pb、U、F 和REE(图1D)。
近年来,碰撞造山及其成矿理论的研究日趋深入,国内外许多地质学家尝试将矽卡岩成矿与碰撞造山作用联系起来。如Nicolescu et al.(1999)认为,罗马尼亚西南的Ocna de Fier-Dognecea Fe-(Pb-Zn)矽卡岩矿床形成于后碰撞构造环境;Kuscu et al.(2002)研究了土耳其安那托利亚省中部Celebi地区的与W、Fe、Cu矽卡岩矿床成矿作用密切相关的Celebi类花岗岩体,认为该岩体形成于后碰撞的构造环境;Marchev et al.(2005)研究认为,保加利亚南部和希腊北部的罗多彼山脉的Pb-Zn-Ag,Cu-Mo及Au-Ag矽卡岩型多金属矿床形成于造山后的伸展阶段;Mueller et al.(2004)认为,西澳大利亚 Southern Cross 绿岩带中的 Nevoria 金矽卡岩矿床的成矿岩体为后造山花岗岩。陈衍景等(2004)总结了我国矽卡岩型金矿床成矿时代、空间分布及形成的地球动力学背景,认为中国的矽卡岩金矿床多在陆陆碰撞过程中由挤压向伸展转变期的减压升温体制下形成。
图1 矽卡岩矿床与特定构造背景耦合
(据Meinert et al.,2005,有修改)
A—大洋俯冲和弧后盆地环境;B—与增生大洋地块相关的大陆俯冲;C—过渡低角度俯冲环境;D—大陆裂谷或俯冲后的构造环境
图2 矽卡岩形成过程
(据Cawood,2009)
A—等化学作用阶段;B—变质作用阶段;C—退化阶段
在研究矽卡岩矿床成因时,研究者多采用流体包裹体方法确定矽卡岩形成时流体的温度、压力和成分等条件。以往人们在解释矽卡岩矿的成因时,往往偏重于矽卡岩带的形成条件,不重视对矿化问题本身的研究。近年来,成矿作用过程、成矿热流体的来源和演化过程、矿质沉淀机理等方面取得了重要进展(Ya⁃suhiro,1999;Choi et al.,2000;Aissa et al.,2001;Lu et al.,2003;Baker et al.,2004;Meinert et al.,2003;Levresse et al.,2003),但就巨量矿质来源问题的研究仍不够深入。矽卡岩金矿的形成过程与矽卡岩的形成密不可分,而矽卡岩的形成过程大致可分为3个阶段(图2)。
鉴于矽卡岩矿床与侵入岩之间直观而密切的时空联系,近年来中外学者特别注重研究岩浆活动对矽卡岩成矿的重要控制作用(Fershtater,2000;Somarin et al.,2002)。Einaudi et al.(1981,1982),Meinert(1989),Ray et al.(1988,1990)研究认为,与金矽卡岩成矿作用最为密切的是闪长岩-石英闪长岩系列。在整个成矿系统中,矽卡岩型金矿与其他类型的金矿和Cu-Au矿床可以有一定的空间共生关系,如纳米比亚Karibib地区的矽卡岩矿床(Gawood,2009)。
二、应用范围及应用实例
图3 吉尔吉斯阿克塔什金-(铜)矿床地质略图
(据李丽等,2012)
1—第四系;2—大理岩、灰岩夹喷出岩(卡拉扎尔钦组);3—含矿花岗闪长岩;4—岩脉;5—矿体及编号;6—矽卡岩;7—硅化带;8—断层破碎带
吉尔吉斯斯坦阿克塔什金-(铜)矿床位于吉尔吉斯塔拉斯地区,属吉尔吉斯山-伊什基利克铁铜金银多金属成矿带。近EW向下寒武统卡拉尔钦组灰岩夹层被中奥陶世苏布杜克措翁花岗闪长岩及晚奥陶世斑状花岗岩穿切,灰岩中还侵入有闪长玢岩、正长闪长岩、正长斑岩等岩墙(脉),花岗闪长岩外接触带均发生矽卡岩化和细脉-浸染状金-铜矿化(图3)。矽卡岩矿体产状平缓,分布在侵入体下部,呈层状,厚0.5~70m。按矽卡岩矿物分为石榴子石矽卡岩、磁铁矿矽卡岩、钙铁辉石矽卡岩、钙蔷薇辉石矽卡岩、绿帘石石榴子石矽卡岩和绿帘石斜长石矽卡岩。最富的金矿体赋存于石榴子石矽卡岩中。矿体按边界品位为1g/t圈出61个矿体。呈透镜状、巢状、层状,倾向SE向,倾角45°,矿体最长80~260m,厚3.5~12.45m,斜深32~180m(图3)。
矿床类型为矽卡岩型金-铜矿床,中奥陶世细粒闪长岩、闪长岩、石英闪长岩和花岗闪长岩中有少量斑岩型铜矿化。主要矿石矿物有黄铜矿、斑铜矿、磁铁矿和自然金,次为辉铋矿、磁黄铁矿、辉钼矿、赤铁矿。氧化带主要铜矿物变为辉铜矿、铜蓝、硅孔雀石、孔雀石、蓝铜矿等。主要脉石矿物有石榴子石、辉石、石英、绿帘石、碳酸盐。按工艺性质分为综合利用铁和不含铁的铜-金矿两类。浮选第一类矿石中可回收金76%,浮选第二类矿石中可回收金81.2%。该矿床不远处分布有安达什铜金矿(斑岩型)、塔尔德布拉克铜金矿(斑岩型)、托赫托内沙伊铜金矿(矽卡岩型)等重要矿产地。
该矿床主要特点是:①矽卡岩化蚀变强烈,所有花岗闪长岩外接触带均发生矽卡岩化和细脉-浸染状金-铜矿化作用;②矿化位于侵入体下部,沿接触带呈层状产出,其中最富矿体位于石榴子石矽卡岩内部;③矽卡岩性金-(铜)矿床与斑岩型铜矿等矿床在空间上伴生。
三、资料来源
董树义.2008.山东沂南金矿床成因与成矿规律和成矿预测.博士学位论文.北京:中国地质大学(北京),63~73
李丽,李宝强,董福辰等.2009.吉尔吉斯铜金矿床类型与地质特征.地质通报,30(3):342~346
V.V.Nikonorov.2000.吉尔吉斯地质和矿产资源.比什凯克:吉尔吉斯斯坦人民出版社
Meinert L D,Dipple G M,Nocolescu S.2005.World Skarn deposits.Economic Geology,100 th Anniversary Volume:299~336
Cawood P A.2009.Hydrothermal processes and mineral systems.Franco Pirajno:Geological survey of western Australia,Perth,WA,Australia:535~580