齐次方程属于微分方程吗?

 我来答
吉禄学阁

2020-03-04 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62493

向TA提问 私信TA
展开全部
一阶齐次和二阶齐次微分方程,含有微分dy或者d^2y,所以肯定是微分方程。
积角累4703
2020-03-03 · TA获得超过4784个赞
知道大有可为答主
回答量:6553
采纳率:83%
帮助的人:213万
展开全部
“齐次”从词面上解释是“次数相等”的意思。
微分方程中有两个地方用到“齐次”的叫法:
1、形如y'=f(y/x)的方程称为“齐次方程”,这里是指方程中每一项关于x、y的次数都是相等的,例如x^2,xy,y^2都算是二次项,而y/x算0次项,方程y'=1+y/x中每一项都是0次项,所以是“齐次方程”。
2、形如y''+py'+qy=0的方程称为“齐次线性方程”,这里“齐次”是指方程中每一项关于未知函数y及其导数y',y'',……的次数都是相等的(都是一次),而方程y''+py'+qy=x就不是“齐次”的,因为方程右边的项x不含y及y的导数,是关于y,y',y'',……的0次项,因而就要称为“非齐次线性方程”。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Tfdfhdtddgdder
2020-04-12 · TA获得超过1207个赞
知道小有建树答主
回答量:522
采纳率:84%
帮助的人:23.3万
展开全部
齐次微分方程(homogeneous differential equation)是指能化为可分离变量方程的一类微分方程,它的标准形式是 y'=f(y/x),其中 f 是已知的连续方程。求解齐次微分方程的关键是作变换 u=y/x ,即 y=ux ,它可以把方程转换为关于 u 与 x 的可分离变量的方程,此时有 y'=u+xu',代入原方程即可得可分离变量的方程 u+xu'=f(u) ,分离变量并积分即可得到结果,需要注意的是,最后应把 u=y/x 代入,并作必要的变形。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式