已知函数f(x)=ax²+(a-2)x-lnx. 5
展开全部
(1)首先题目应该是f(x)的单调性
f(x)定义域为[0,+无穷]
f'(x)=2ax+a-2-1/x=(2x+1)(ax-1)/x
a>0时:1/a>0,f(1/a)=0
在0<x<1/a上f'(x)<0,f(x)递减
在1/a<=x上f'(x)>=0,f(x)递增
a<0时:1/a<0
在0<x上f'(x)<0,f(x)递减
(2)任意x>0,f(x)>=0则f(x)在x>0上递增,a>0
已知a>0时:
在0<x<1/a上f'(x)<0,f(x)递减
在1/a<=x上f'(x)>=0,f(x)递增
即x>0上f(x)最小值为f(1/a)=1-1/a-ln1/a
设t=1/a,g(t)=1-t-lnt(t>0)
f(x)>=0即f(1/a)=1-1/a-ln1/a>=0即g(t)>=0
g'(t)=-1-1/t=-(t+1)/t
即在t>0上g'(t<0),g(t)递减
g(1)=0则:0<t<=1时g(t)>=0,t>1时g(t)<0
0<t<=1即0<1/a<=1即a>=1时f(x)>=0
综上a>=1
f(x)定义域为[0,+无穷]
f'(x)=2ax+a-2-1/x=(2x+1)(ax-1)/x
a>0时:1/a>0,f(1/a)=0
在0<x<1/a上f'(x)<0,f(x)递减
在1/a<=x上f'(x)>=0,f(x)递增
a<0时:1/a<0
在0<x上f'(x)<0,f(x)递减
(2)任意x>0,f(x)>=0则f(x)在x>0上递增,a>0
已知a>0时:
在0<x<1/a上f'(x)<0,f(x)递减
在1/a<=x上f'(x)>=0,f(x)递增
即x>0上f(x)最小值为f(1/a)=1-1/a-ln1/a
设t=1/a,g(t)=1-t-lnt(t>0)
f(x)>=0即f(1/a)=1-1/a-ln1/a>=0即g(t)>=0
g'(t)=-1-1/t=-(t+1)/t
即在t>0上g'(t<0),g(t)递减
g(1)=0则:0<t<=1时g(t)>=0,t>1时g(t)<0
0<t<=1即0<1/a<=1即a>=1时f(x)>=0
综上a>=1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这类问题可用导数求解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询