高中数学:EX=np、Dx=npq怎么推导?(很是不明白)

 我来答
桂初桖28
2019-04-11 · TA获得超过2556个赞
知道小有建树答主
回答量:715
采纳率:72%
帮助的人:273万
展开全部

要把前提条件加进来啊,什么分布,后面的字母代表什么。

猜测是二项分布的期望和方差。

答案来自:4416210960 ,我不知道怎么把他的答案转过来

注意,这里画圈部分原来的回答有笔误,圈内第一项p的一次方,第二项p的2次方,q的n-3次方。

另一种方法,来自:泡面干嚼着吃 

伯努利分布的分布列如下图:

则根据离散型随机变量的均值和方差定义:

E(X)=0*(1-p)+1*p=p   

D(X)=(0-E(X))2(1-p)+(1-E(X))2p=p2(1-p)+(1-p)2p=p2-p3+p3-2p2+p=p-p2=p(1-p)

对于二项分布X~B(n,p),X表示的是n次伯努利试验中事件发生次数的随机变量。用Xi表示第i次伯努利试验中的随机变量,那么n次伯努利试验总的随机变量X可以表示成:

X=X1+X2+...+Xi+...+Xn

根据均值和方差的性质,如果两个随机变量X,Y相互独立,那么:

E(X+Y)=E(X)+E(Y)

D(X+Y)=D(X)+D(Y)

对于二项分布X~B(n,p),每一次伯努利试验都相互独立,因此:

E(X)=E(X1)+E(X2)+...+E(Xi)+...+E(Xn)=p+p+...+p+...p=np

D(X)=D(X1)+D(X2)+...+D(Xi)+...+D(Xn)=p(1-p)+p(1-p)+...+p(1-p)+...+p(1-p)=np(1-p)

追问
不明白怎么就变成Ex=np(p+q)的n-1次方了?np我明白了,后边那没明白怎么回事
追答
(p+q)的n-1方的二项展开,就是前面的那行括号里的内容啊。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式