展开全部
原式=∫2dx/(4+2sin^2x)
=∫2dx/(5-cos2x)
令u=tanx,则x=arctanu,dx=du/(1+u^2)
原式=∫{2/[5-(1-u^2)/(1+u^2)]}*du/(1+u^2)
=∫2/(5+5u^2-1+u^2)du
=∫du/(3u^2+2)
=(1/3)*∫du/(u^2+2/3)
=(1/3)*(√3/√2)*arctan[u*(√3/√2)]+C
=(1/√6)*arctan[(√3/√2)*tanx]+C,其中C是任意常数
=∫2dx/(5-cos2x)
令u=tanx,则x=arctanu,dx=du/(1+u^2)
原式=∫{2/[5-(1-u^2)/(1+u^2)]}*du/(1+u^2)
=∫2/(5+5u^2-1+u^2)du
=∫du/(3u^2+2)
=(1/3)*∫du/(u^2+2/3)
=(1/3)*(√3/√2)*arctan[u*(√3/√2)]+C
=(1/√6)*arctan[(√3/√2)*tanx]+C,其中C是任意常数
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-12-02 · 知道合伙人教育行家
关注
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询