
[tan(pai-a)cos(2pai-a)sin(-a+3pai/2)]/[cos(-a-pai)sin(-pai-a)]=
展开全部
tan周期是π
cos周期是2π
所以原式=tan(-a)cos(-a)sin(-a+3π/2-2π)/[cos(-a+π)sin(2π-π-a)]
=-tanacosasin(-a-π/2)/[-cosasin(π-a)]
=tanacosasin(a+π/2)/(-cosasina)
=(sina/cosa)cosacosa/(-cosasina)
=cosasina/(-cosasina)
=-1
cos周期是2π
所以原式=tan(-a)cos(-a)sin(-a+3π/2-2π)/[cos(-a+π)sin(2π-π-a)]
=-tanacosasin(-a-π/2)/[-cosasin(π-a)]
=tanacosasin(a+π/2)/(-cosasina)
=(sina/cosa)cosacosa/(-cosasina)
=cosasina/(-cosasina)
=-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询