高中数学绝对值 几何
3个回答
展开全部
绝对值
几何意义:在数轴上,一个数与原点的距离叫做该数的绝对值(absolute
value).
代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0
互为相反数的两个数的绝对值相等
绝对值用“|a
|”表示.读作“a的绝对值”.
如:|-2|读作-2的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,,绝对值是非负数≥0。
特殊的零的绝对值既是他的本身又是他的相反数,写作|0|=0
两个负数比较大小,绝对值大的反而小
比如:若
|2(x—1)—3|+(2y—4)²=0,则x=___,y=____。(|是绝对值)
答案:
2(X-1)-3=0
X=5/2
2Y-4=0
Y=2
一对相反数的绝对值相等:
例+2的绝对值等于—2的绝对值【因为在数轴上他们离原点的单位长度相等】
绝对值的几何意义和代数意义:
几何定义:数轴上表示数a的点与原点的距离叫做数a的绝对值。
(在数轴上表示数a的点与原点的距离一定是非负数)
代数定义:|a|={a>0
a=a
{a<0
a=-a
{a=o
a=0
关于绝对值的题目:已知|x|=3,|y|=1/2,且|x-y|=y-x,求y-x
解:因为|x-y|>0
或=0,
且|x-y|=y-x,所以x<0,x只能等于-3。y=-1/2
或=1/2。
设y=1/2,则原式=1/2-(-3)=
3又1/2。设y=-1/2,
则原式=(-1/2)—(-3)=2又1/2。
答:y-x等于3又1/2或2又1/2。
|x-1|+|x-2|+|x-3|.....|x-5|的最小值为多少,可以用几何意义来做,要想最小就要取中间的也就是x-3=0即x=3原式=6,为最小值
|x-1|+|x-2|+|x-3|+|x-4|则取2,3中间任意一点,得4
公式|m-n|-|n-m|=0
m/n可以是任何数
应用向量运算证明,虽然证明过程的书写较长,但因不用添加辅助线而减少了思维量,减少了思考的时间.
几何意义:在数轴上,一个数与原点的距离叫做该数的绝对值(absolute
value).
代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0
互为相反数的两个数的绝对值相等
绝对值用“|a
|”表示.读作“a的绝对值”.
如:|-2|读作-2的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,,绝对值是非负数≥0。
特殊的零的绝对值既是他的本身又是他的相反数,写作|0|=0
两个负数比较大小,绝对值大的反而小
比如:若
|2(x—1)—3|+(2y—4)²=0,则x=___,y=____。(|是绝对值)
答案:
2(X-1)-3=0
X=5/2
2Y-4=0
Y=2
一对相反数的绝对值相等:
例+2的绝对值等于—2的绝对值【因为在数轴上他们离原点的单位长度相等】
绝对值的几何意义和代数意义:
几何定义:数轴上表示数a的点与原点的距离叫做数a的绝对值。
(在数轴上表示数a的点与原点的距离一定是非负数)
代数定义:|a|={a>0
a=a
{a<0
a=-a
{a=o
a=0
关于绝对值的题目:已知|x|=3,|y|=1/2,且|x-y|=y-x,求y-x
解:因为|x-y|>0
或=0,
且|x-y|=y-x,所以x<0,x只能等于-3。y=-1/2
或=1/2。
设y=1/2,则原式=1/2-(-3)=
3又1/2。设y=-1/2,
则原式=(-1/2)—(-3)=2又1/2。
答:y-x等于3又1/2或2又1/2。
|x-1|+|x-2|+|x-3|.....|x-5|的最小值为多少,可以用几何意义来做,要想最小就要取中间的也就是x-3=0即x=3原式=6,为最小值
|x-1|+|x-2|+|x-3|+|x-4|则取2,3中间任意一点,得4
公式|m-n|-|n-m|=0
m/n可以是任何数
应用向量运算证明,虽然证明过程的书写较长,但因不用添加辅助线而减少了思维量,减少了思考的时间.
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
绝对值
几何意义:在数轴上,一个数与原点的距离叫做该数的绝对值(absolute
value).
代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0
互为相反数的两个数的绝对值相等
绝对值用“|a
|”表示.读作“a的绝对值”.
如:|-2|读作-2的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,,绝对值是非负数≥0。
特殊的零的绝对值既是他的本身又是他的相反数,写作|0|=0
两个负数比较大小,绝对值大的反而小
比如:若
|2(x—1)—3|+(2y—4)²=0,则x=___,y=____。(|是绝对值)
答案:
2(X-1)-3=0
X=5/2
2Y-4=0
Y=2
一对相反数的绝对值相等:
例+2的绝对值等于—2的绝对值【因为在数轴上他们离原点的单位长度相等】
绝对值的几何意义和代数意义:
几何定义:数轴上表示数a的点与原点的距离叫做数a的绝对值。
(在数轴上表示数a的点与原点的距离一定是非负数)
代数定义:|a|={a>0
a=a
{a<0
a=-a
{a=o
a=0
关于绝对值的题目:已知|x|=3,|y|=1/2,且|x-y|=y-x,求y-x
解:因为|x-y|>0
或=0,
且|x-y|=y-x,所以x<0,x只能等于-3。y=-1/2
或=1/2。
设y=1/2,则原式=1/2-(-3)=
3又1/2。设y=-1/2,
则原式=(-1/2)—(-3)=2又1/2。
答:y-x等于3又1/2或2又1/2。
|x-1|+|x-2|+|x-3|.....|x-5|的最小值为多少,可以用几何意义来做,要想最小就要取中间的也就是x-3=0即x=3原式=6,为最小值
|x-1|+|x-2|+|x-3|+|x-4|则取2,3中间任意一点,得4
公式|m-n|-|n-m|=0
m/n可以是任何数
应用向量运算证明,虽然证明过程的书写较长,但因不用添加辅助线而减少了思维量,减少了思考的时间.
几何意义:在数轴上,一个数与原点的距离叫做该数的绝对值(absolute
value).
代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0
互为相反数的两个数的绝对值相等
绝对值用“|a
|”表示.读作“a的绝对值”.
如:|-2|读作-2的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,,绝对值是非负数≥0。
特殊的零的绝对值既是他的本身又是他的相反数,写作|0|=0
两个负数比较大小,绝对值大的反而小
比如:若
|2(x—1)—3|+(2y—4)²=0,则x=___,y=____。(|是绝对值)
答案:
2(X-1)-3=0
X=5/2
2Y-4=0
Y=2
一对相反数的绝对值相等:
例+2的绝对值等于—2的绝对值【因为在数轴上他们离原点的单位长度相等】
绝对值的几何意义和代数意义:
几何定义:数轴上表示数a的点与原点的距离叫做数a的绝对值。
(在数轴上表示数a的点与原点的距离一定是非负数)
代数定义:|a|={a>0
a=a
{a<0
a=-a
{a=o
a=0
关于绝对值的题目:已知|x|=3,|y|=1/2,且|x-y|=y-x,求y-x
解:因为|x-y|>0
或=0,
且|x-y|=y-x,所以x<0,x只能等于-3。y=-1/2
或=1/2。
设y=1/2,则原式=1/2-(-3)=
3又1/2。设y=-1/2,
则原式=(-1/2)—(-3)=2又1/2。
答:y-x等于3又1/2或2又1/2。
|x-1|+|x-2|+|x-3|.....|x-5|的最小值为多少,可以用几何意义来做,要想最小就要取中间的也就是x-3=0即x=3原式=6,为最小值
|x-1|+|x-2|+|x-3|+|x-4|则取2,3中间任意一点,得4
公式|m-n|-|n-m|=0
m/n可以是任何数
应用向量运算证明,虽然证明过程的书写较长,但因不用添加辅助线而减少了思维量,减少了思考的时间.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这题借助于数轴很好解决
/x-2/-/x+4/含义是x到2的距离与x到-4距离的差
∴当x≥2
/x-2/-/x+4/=-6
当-4
评论
0
0
加载更多
/x-2/-/x+4/含义是x到2的距离与x到-4距离的差
∴当x≥2
/x-2/-/x+4/=-6
当-4
评论
0
0
加载更多
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |