二重积分与累次积分的区别是什么
1个回答
展开全部
二重积分与二次积分的区别:
二重积分是有关面积的积分,二次积分是两次单变量积分。
①当f(x,y)在有界闭区域内连续,那么二重积分和二次积分相等,对开区域或无界区域这关系不衡成立。
②二次积分不一定能二重积分,如:对[0,1]*[0,1]区域,对任意x∈[0,1]可定义一个对y连续的函数g(x,y)(y∈[0,1])∫g(x,y)dy=1,那么∫dx∫g(x,y)dy有意义,一般地∫∫g(x,y)dσ没意义。
③可以二重积分不一定能二次积分,区域S={(x,y)|x>=1,|y|。
二重积分是有关面积的积分,二次积分是两次单变量积分。
①当f(x,y)在有界闭区域内连续,那么二重积分和二次积分相等,对开区域或无界区域这关系不衡成立。
②二次积分不一定能二重积分,如:对[0,1]*[0,1]区域,对任意x∈[0,1]可定义一个对y连续的函数g(x,y)(y∈[0,1])∫g(x,y)dy=1,那么∫dx∫g(x,y)dy有意义,一般地∫∫g(x,y)dσ没意义。
③可以二重积分不一定能二次积分,区域S={(x,y)|x>=1,|y|。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询