x²+y²=x→r=cosθ (-½π≤θ≤½π)
√(1-x²-y²)→√(1-(rcosθ)²-(rsinθ)²=√1-r²
dxdy→rdrdθ
原式=∫(-½π,½π)dθ∫(0,cosθ)√(1-r²)rdr
=-½∫(-½π,½π)dθ∫(0,cosθ)√(1-r²)d(1-r²)
=-½·⅔∫(-½π,½π)[(1-r²)^1.5|(0,cosθ)]dθ
=-⅓∫(-½π,½π)[sin³θ-1]dθ
=⅓∫(-½π,½π)dθ-⅓∫(-½π,½π)sin³θdθ
=⅓π-0 (奇函数积分域对称,定积分结果=0)
=⅓π