定积分存在的条件

 我来答
迷途羔羊1991

2020-11-06 · TA获得超过4.6万个赞
知道大有可为答主
回答量:3.3万
采纳率:81%
帮助的人:1177万
展开全部
定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
不定积分(Indefinite integral)

即已知导数求原函数。若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无

限多个原函数。

定积分 (definite integral)

定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。

定义
设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式

。该和式叫做积分和,设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x) 在区间[a,b]的定积分,记为

,并称函数f(x)在区间[a,b]上可积。

其中:a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号

之所以称其为定积分,是因为它积分后得出的值是确定的,是一个常数, 而不是一个函数。

根据上述定义,若函数f(x)在区间[a,b]上可积分,则有n等分的特殊分法:

特别注意,根据上述表达式有,当[a,b]区间恰好为[0,1]区间时,则[0,1]区间积分表达式为:
茹翊神谕者

2021-11-03 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25130

向TA提问 私信TA
展开全部

定积分存在的条件

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
自由度为n
2021-05-19
知道答主
回答量:10
采纳率:0%
帮助的人:3249
展开全部
补充一下上一位作者回答的,实际上函数如果在区间上无第一类间断点(包括跳跃间断点和可去间断点),就一定没有原函数,即不定积分不存在。而不定积分存在的另一个条件不单是有限个间断点,还必须在间断点处有界。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式