已知曲线C上任意一点M到点F(1,0)的距离比它到直线l:x=-2的距离小1. ...

已知曲线C上任意一点M到点F(1,0)的距离比它到直线l:x=-2的距离小1.(1)求曲线C的方程;(2)斜率为1的直线l过点F,且与曲线C交与A、B两点,求线段AB的长... 已知曲线C上任意一点M到点F(1,0)的距离比它到直线l:x=-2的距离小1. (1)求曲线C的方程; (2)斜率为1的直线l过点F,且与曲线C交与A、B两点,求线段AB的长. 展开
 我来答
蓬阑余安萱
2020-01-07 · TA获得超过3967个赞
知道大有可为答主
回答量:3197
采纳率:30%
帮助的人:233万
展开全部
分析:(1)由已知:点M到F(1,0)的距离与它到直线l':x=-1的距离相等,所以点M的轨迹C是以F为焦点,l'为准线的抛物线,由此能求出曲线C的方程.
(2)设交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由抛物线的定义可得|AF|=dA=x1+1|BF|=dB=x2+1,于是|AB|=|AF|+|BF|=x1+x2+2,由此能求出线段AB的长.
解答:解:(1)由已知条件知,
点M到F(1,0)的距离与它到直线l':x=-1的距离相等,
∴点M的轨迹C是以F为焦点,
l'为准线的抛物线,
∴曲线C的方程为y2=4x.…(4分)
(2)设交点A,B的坐标分别为A(x1,y1),B(x2,y2),
则由抛物线的定义可得|AF|=dA=x1+1|BF|=dB=x2+1…(6分)
于是|AB|=|AF|+|BF|=x1+x2+2
由条件知直线l方程为:y=x-1代入y2=4x,
得 (x-1)2=4x
即 x2-6x+1=0∴x1+x2=6,
故|AB|=x1+x2+2=8.…(10分)
点评:本题主要考查直线与圆锥曲线的综合应用能力,综合性强,是高考的重点,易错点是知识体系不牢固.本题具体涉及到轨迹方程的求法及直线与双曲线的相关知识,解题时要注意合理地进行等价转化.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式