求不定积分e^(x^2)

 我来答
你的眼神唯美
2020-08-23 · 海离薇:不定积分,求导验证。
你的眼神唯美
采纳数:1541 获赞数:61960

向TA提问 私信TA
展开全部

定积分结果不唯一求导验证应该能够提高凑微分的计算能力先写别问唉。非初等函数不可积,但是可以求解反常积分

广义积分,定积分。涉及伽玛函数。,贝塔函数。二重积分

崇元化65
高粉答主

2020-08-24 · 说的都是干货,快来关注
知道小有建树答主
回答量:202
采纳率:100%
帮助的人:2.8万
展开全部

解析:

∫e^(-x^2)dx=(-1/2)∫de^(-x^2)/x

=(-1/2)e^(-x^2)/x -(1/2)∫e^(-x^2)dx/x^2

=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3+(1/4)∫e^(-x^2)d(1/x^3)

=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3-(1/8)e^(-x^2)/x^4+(1/8)∫e^(-x^2)d(1/x^4)
x^2

=t   ∫e^(-x^2)d(1/x^4)

=∫e^(-t)d(1/t^2)=e^(-t)/t^2+∫e^(-t)dt/t^2

=e^(-t)/t^2-e^(-t)/t-∫e^(-t)dt/te^x

=1+x+x^2/2!+x^3/3!+x^4/4!+..+x^n/n!e^(-t)

=1+(-t)+(-t)^2/2!+(-t)^3/3!+..+(-t)^n/n!

∫e^(-t)dt/t=lnt-t -t^2/(2*2!)-t^3/(3*3!)-..-t^n/(n*n!)

所以∫e^(-x^2)dx=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3-(1/8)e^(-x^2)/x^4+(1/8)e^(-x^2)/x^4-(1/8)e^(-x^2)/x^2-(1/8)[ln(x^2)-x^2-(x^2)^2/(2*2!)-(x^2)^3/(3*3!)-..-(x^2)^n/(n*n!)]

扩展资料:

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数。因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。

由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

参考资料来源:百度百科-不定积分

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2020-08-23 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1525万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式