∫[1/(3+cosx)]dx=
3个回答
展开全部
令t=tanx/2
x=2arctant
dx=2/(1+t^2)dt
cosx=(1-t^2)/(1+t^2)
代入得:
∫1/(3+cosx)dx
=∫1/(3+(1-t^2)/(1+t^2))*2/(1+t^2)dt
=∫1/(2+t^2)dt=(1/√2)arctan(t/√2)+C
=(1/√2)arctan(tan(x/2)/√2)+C
扩展资料:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
求不定积分的方法:
1、换元积分法:
可分为第一类换元法与第二类换元法。
第一类换元法(即凑微分法)
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。
2、分部积分法
公式:∫udv=uv-∫vdu
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。一个不定积分的原函数有无数个。
展开全部
令x=2u,则:u=x/2,dx=2du.
∴∫[1/(3+cosx)]dx
=2∫[1/(3+cos2u)]du
=2∫{1/[3+2(cosu)^2-1]}du
=2∫{1/[2+2(cosu)^2]}du
=∫{1/[1+(cosu)^2]du
=∫{1/[2(cosu)^2+(sinu)^2]}du
=∫{1/[2+(tanu)^2]}[1/(cosu)^2]du
=(1/2)∫{1/[1+(1/2)(tanu)^2]}d(tanu)
=(√2/2)∫{1/[1+(1/2)(tanu)^2]}d[(1/√2)tanu]
=(√2/2)arctan[(1/√2)tanu]+C
=(√2/2)arctan[(√2/2)tan(x/2)]+C
∴∫[1/(3+cosx)]dx
=2∫[1/(3+cos2u)]du
=2∫{1/[3+2(cosu)^2-1]}du
=2∫{1/[2+2(cosu)^2]}du
=∫{1/[1+(cosu)^2]du
=∫{1/[2(cosu)^2+(sinu)^2]}du
=∫{1/[2+(tanu)^2]}[1/(cosu)^2]du
=(1/2)∫{1/[1+(1/2)(tanu)^2]}d(tanu)
=(√2/2)∫{1/[1+(1/2)(tanu)^2]}d[(1/√2)tanu]
=(√2/2)arctan[(1/√2)tanu]+C
=(√2/2)arctan[(√2/2)tan(x/2)]+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |