微积分求解?
1个回答
展开全部
根据泰勒展开公式,对任意x>0,t>0,有
f(x+t)=f(x)+f'(x)*t+(1/2)*f''(ξ)*t^2,其中ξ∈(x,x+t)
则f'(x)*t=f(x+t)-f(x)-(1/2)*f''(ξ)*t^2
|f'(x)*t|=|f(x+t)-f(x)-(1/2)*f''(ξ)*t^2|
<=|f(x+t)|+|f(x)|+(1/2)*|f''(ξ)|*t^2
<=A+A+(1/2)*B*t^2
=2A+(B/2)*t^2
|f'(x)|<=2A/t+Bt/2
因为上述不等式对任意x>0均成立,所以|f'(x)|<=min{2A/t+Bt/2}
根据均值不等式,2A/t+Bt/2>=2√(AB),当且仅当t=2√(A/B)时,等号成立
所以|f'(x)|<=2√(AB)
f(x+t)=f(x)+f'(x)*t+(1/2)*f''(ξ)*t^2,其中ξ∈(x,x+t)
则f'(x)*t=f(x+t)-f(x)-(1/2)*f''(ξ)*t^2
|f'(x)*t|=|f(x+t)-f(x)-(1/2)*f''(ξ)*t^2|
<=|f(x+t)|+|f(x)|+(1/2)*|f''(ξ)|*t^2
<=A+A+(1/2)*B*t^2
=2A+(B/2)*t^2
|f'(x)|<=2A/t+Bt/2
因为上述不等式对任意x>0均成立,所以|f'(x)|<=min{2A/t+Bt/2}
根据均值不等式,2A/t+Bt/2>=2√(AB),当且仅当t=2√(A/B)时,等号成立
所以|f'(x)|<=2√(AB)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询