微积分求解?
展开全部
根据泰勒展开公式,对任意x>0,t>0,有
f(x+t)=f(x)+f'(x)*t+(1/2)*f''(ξ)*t^2,其中ξ∈(x,x+t)
则f'(x)*t=f(x+t)-f(x)-(1/2)*f''(ξ)*t^2
|f'(x)*t|=|f(x+t)-f(x)-(1/2)*f''(ξ)*t^2|
<=|f(x+t)|+|f(x)|+(1/2)*|f''(ξ)|*t^2
<=A+A+(1/2)*B*t^2
=2A+(B/2)*t^2
|f'(x)|<=2A/t+Bt/2
因为上述不等式对任意x>0均成立,所以|f'(x)|<=min{2A/t+Bt/2}
根据均值不等式,2A/t+Bt/2>=2√(AB),当且仅当t=2√(A/B)时,等号成立
所以|f'(x)|<=2√(AB)
f(x+t)=f(x)+f'(x)*t+(1/2)*f''(ξ)*t^2,其中ξ∈(x,x+t)
则f'(x)*t=f(x+t)-f(x)-(1/2)*f''(ξ)*t^2
|f'(x)*t|=|f(x+t)-f(x)-(1/2)*f''(ξ)*t^2|
<=|f(x+t)|+|f(x)|+(1/2)*|f''(ξ)|*t^2
<=A+A+(1/2)*B*t^2
=2A+(B/2)*t^2
|f'(x)|<=2A/t+Bt/2
因为上述不等式对任意x>0均成立,所以|f'(x)|<=min{2A/t+Bt/2}
根据均值不等式,2A/t+Bt/2>=2√(AB),当且仅当t=2√(A/B)时,等号成立
所以|f'(x)|<=2√(AB)
哎呦互动
2024-07-12 广告
2024-07-12 广告
当然,以下是关于免费抽奖系统微信扫码的简要介绍:我们上海爱友信息科技有限公司推出的免费抽奖系统,只需微信扫码即可轻松参与。操作简单便捷,用户体验流畅。活动奖品丰富多样,中奖概率高,确保每位参与者都有机会赢得心仪的奖品。我们致力于为用户提供公...
点击进入详情页
本回答由哎呦互动提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询