数列{an}的通项公式为an=(-1)n-1•(4n-3),则它的前100项之和...
数列{an}的通项公式为an=(-1)n-1•(4n-3),则它的前100项之和S100等于()A.200B.-200C.400D.-400...
数列{an}的通项公式为an=(-1)n-1•(4n-3),则它的前100项之和S100等于( ) A.200 B.-200 C.400 D.-400
展开
2个回答
展开全部
分析:根据题中的熟练公式可得a1=1,a2=-5,a3=9,a4=-13,…a99=393,a100=-397,并且观察其特点利用分组求和的方法进行求和,进而得到答案.
解答:解:由题意可得:数列{an}的通项公式为an=(-1)n-1•(4n-3),
所以a1=1,a2=-5,a3=9,a4=-13,…a99=393,a100=-397,
所以S100=(a1+a2)+(a3+a4)+…+(a99+a100),
所以S100=-(4+4+…+4)=-200.
故选B.
点评:解决此类问题的关键是熟练掌握熟练求和的基本方法,即分组求和、错位相减、裂项相消、倒序相加等方法.
解答:解:由题意可得:数列{an}的通项公式为an=(-1)n-1•(4n-3),
所以a1=1,a2=-5,a3=9,a4=-13,…a99=393,a100=-397,
所以S100=(a1+a2)+(a3+a4)+…+(a99+a100),
所以S100=-(4+4+…+4)=-200.
故选B.
点评:解决此类问题的关键是熟练掌握熟练求和的基本方法,即分组求和、错位相减、裂项相消、倒序相加等方法.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询