数学极限问题,这类题怎么做,过程,谢谢
1/(n^2) + 2/(n^2) +...+ n/(n^2)
=(1+n)n/(2*(n^2))=(n+1)/(2n)
当n趋向于无限大时,(n+1)/(2n)=1/2
因为1/(n*(n-1))=1/n - 1/(n-1)
所以[1/1*2 + 1/2*3 +...+ 1/(n*(n+1))]
=[(1/1 - 1/2)+(1/2 - 1/3)+...+(1/n - 1/(n+1))]=1 - 1/(n+1)=(n/(n+1)
当n趋向于无限大时,(n/(n+1)=1因为2/((2n-1)*(2n+1))=1/(2n-1) - 1/(2n+1)
所以[2/1*3 + 2/3*5 +...+ 2/((2n-1)*(2n+1))]
=[(1/1 - 1/3)+(1/3 - 1/5)+...+(1/(2n - 1) - 1/(2n+1))]=1 - 1/(2n+1)=(2n)/(2n+1)
当n趋向于无限大时,(2n)/(2n+1)=1(x+1)(x^3 - x + 6) / ((x^2 + 4)^2)=(x^4 + x^3 - x^2 + 5x + 6) / (x^4 + 8x^2 + 4)
分子分母同时乘以1/(x^4),
得 (1+ 1/x - 1/x^2 + 5/x^3 + 6/x^4) / (1 + 8/x^2 + 4/x^4)当n趋向于无限大时,1/x, 1/x^2, 5/x^3, 6/x^4, 8/x^2, 4/x^4皆=0
即原式=1/1=1